Spaces with star countable extent

A. D. Rojas-Sánchez; Angel Tamariz-Mascarúa

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 3, page 381-395
  • ISSN: 0010-2628

Abstract

top
For a topological property P , we say that a space X is star P if for every open cover 𝒰 of the space X there exists A X such that s t ( A , 𝒰 ) = X . We consider space with star countable extent establishing the relations between the star countable extent property and the properties star Lindelöf and feebly Lindelöf. We describe some classes of spaces in which the star countable extent property is equivalent to either the Lindelöf property or separability. An example is given of a Tychonoff star Lindelöf space with a point countable base which is not star countable.

How to cite

top

Rojas-Sánchez, A. D., and Tamariz-Mascarúa, Angel. "Spaces with star countable extent." Commentationes Mathematicae Universitatis Carolinae 57.3 (2016): 381-395. <http://eudml.org/doc/286850>.

@article{Rojas2016,
abstract = {For a topological property $P$, we say that a space $X$ is star $P$ if for every open cover $\mathcal \{U\}$ of the space $X$ there exists $A\subset X$ such that $st (A,\mathcal \{U\})= X$. We consider space with star countable extent establishing the relations between the star countable extent property and the properties star Lindelöf and feebly Lindelöf. We describe some classes of spaces in which the star countable extent property is equivalent to either the Lindelöf property or separability. An example is given of a Tychonoff star Lindelöf space with a point countable base which is not star countable.},
author = {Rojas-Sánchez, A. D., Tamariz-Mascarúa, Angel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {extent; star properties; star countable spaces; star Lindelöf spaces; feebly Lindelöf spaces},
language = {eng},
number = {3},
pages = {381-395},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Spaces with star countable extent},
url = {http://eudml.org/doc/286850},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Rojas-Sánchez, A. D.
AU - Tamariz-Mascarúa, Angel
TI - Spaces with star countable extent
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 3
SP - 381
EP - 395
AB - For a topological property $P$, we say that a space $X$ is star $P$ if for every open cover $\mathcal {U}$ of the space $X$ there exists $A\subset X$ such that $st (A,\mathcal {U})= X$. We consider space with star countable extent establishing the relations between the star countable extent property and the properties star Lindelöf and feebly Lindelöf. We describe some classes of spaces in which the star countable extent property is equivalent to either the Lindelöf property or separability. An example is given of a Tychonoff star Lindelöf space with a point countable base which is not star countable.
LA - eng
KW - extent; star properties; star countable spaces; star Lindelöf spaces; feebly Lindelöf spaces
UR - http://eudml.org/doc/286850
ER -

References

top
  1. Alas O.T., Junqueira L.R., Wilson R.G., 10.1016/j.topol.2010.12.012, Topology Appl. 158 (2011), no. 4, 620–626. Zbl1226.54023MR2765618DOI10.1016/j.topol.2010.12.012
  2. Alas O.T., Junqueira L.R., van Mill J., Tkachuk V.V., Wilson R.G., 10.2478/s11533-011-0018-y, Cent. Eur. J. Math. 9 (2011), no. 3, 603–615. Zbl1246.54017MR2784032DOI10.2478/s11533-011-0018-y
  3. Arhangel'skii A.V., Buzyakova R.Z., Additions theorems and D-spaces, Comment. Math. Univ. Carolin. 43 (2002), no. 4, 653–663. MR2045787
  4. Creede G., 10.2140/pjm.1970.32.47, Pacific J. Math. 32 (1970), 47–54. MR0254799DOI10.2140/pjm.1970.32.47
  5. van Douwen E., Reed G.M., Roscoe A.W., Tree I.J., 10.1016/0166-8641(91)90077-Y, Topology Appl. 39 (1991), 71–103. Zbl0743.54007MR1103993DOI10.1016/0166-8641(91)90077-Y
  6. Hiremath G.R., On star with Lindelöf center property, J. Indian Math. Soc. 59 (1993), 227–242. Zbl0887.54021MR1248966
  7. Kuratowski K., Topology, Vol. I, Academic Press, New York-London, 1966. Zbl0849.01044MR0217751
  8. Matveev M.V., A survey on star covering properties, Topology Atlas, 1998, preprint no. 330. 
  9. van Mill J., Tkachuk V.V., Wilson R.G., 10.1016/j.topol.2006.03.029, Topology Appl. 154 (2007), no. 10, 2127–2134. Zbl1131.54022MR2324924DOI10.1016/j.topol.2006.03.029
  10. Pixley C., Roy P., Uncompletable Moore spaces, Procedings of the Auburn Topology Conference (Auburn Univ., Ala., 1969), Auburn University, Ala., 1969, pp. 75–85. Zbl0259.54022MR0397671
  11. Shakhmatov D.B., On pseudocompact spaces with point-countable base, Dokl. Akad. Nauk SSSR 30 (1984), no. 3, 747–751. Zbl0598.54010MR0771585
  12. Song Y.K., On relative star-Lindelöf spaces, New Zealand J. Math. 34 (2005), 159–163. Zbl1099.54022MR2195833
  13. Song Y.K., 10.1007/s10587-006-0056-y, Czechoslovak Math. J. 56(2) (2006), 781–788. MR2291775DOI10.1007/s10587-006-0056-y

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.