Some results on semi-stratifiable spaces

Wei-Feng Xuan; Yan-Kui Song

Mathematica Bohemica (2019)

  • Volume: 144, Issue: 2, page 113-123
  • ISSN: 0862-7959

Abstract

top
We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: (1) If X is a semi-stratifiable space, then X is separable if and only if X is D C ( ω 1 ) ; (2) If X is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then X is separable; (3) Let X be a ω -monolithic star countable extent semi-stratifiable space. If t ( X ) = ω and d ( X ) ω 1 , then X is hereditarily separable. Finally, we prove that for any T 1 -space X , | X | L ( X ) Δ ( X ) , which gives a partial answer to a question of Basile, Bella, and Ridderbos (2011). As a corollary, we show that | X | e ( X ) ω for any semi-stratifiable space X .

How to cite

top

Xuan, Wei-Feng, and Song, Yan-Kui. "Some results on semi-stratifiable spaces." Mathematica Bohemica 144.2 (2019): 113-123. <http://eudml.org/doc/294556>.

@article{Xuan2019,
abstract = {We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: (1) If $X$ is a semi-stratifiable space, then $X$ is separable if and only if $X$ is $DC(\omega _1)$; (2) If $X$ is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then $X$ is separable; (3) Let $X$ be a $\omega $-monolithic star countable extent semi-stratifiable space. If $t(X)=\omega $ and $d(X) \le \omega _1$, then $X$ is hereditarily separable. Finally, we prove that for any $T_1$-space $X$, $|X| \le L(X)^\{\Delta (X)\}$, which gives a partial answer to a question of Basile, Bella, and Ridderbos (2011). As a corollary, we show that $|X| \le e(X)^\{\omega \}$ for any semi-stratifiable space $X$.},
author = {Xuan, Wei-Feng, Song, Yan-Kui},
journal = {Mathematica Bohemica},
keywords = {semi-stratifiable space; separable space; dense subset; feebly compact space; $\omega $-monolithic space; property $DC(\omega _1)$; star countable extent space; cardinal equality; countable chain condition; perfect space; $G^*_\delta $-diagonal},
language = {eng},
number = {2},
pages = {113-123},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on semi-stratifiable spaces},
url = {http://eudml.org/doc/294556},
volume = {144},
year = {2019},
}

TY - JOUR
AU - Xuan, Wei-Feng
AU - Song, Yan-Kui
TI - Some results on semi-stratifiable spaces
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 2
SP - 113
EP - 123
AB - We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: (1) If $X$ is a semi-stratifiable space, then $X$ is separable if and only if $X$ is $DC(\omega _1)$; (2) If $X$ is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then $X$ is separable; (3) Let $X$ be a $\omega $-monolithic star countable extent semi-stratifiable space. If $t(X)=\omega $ and $d(X) \le \omega _1$, then $X$ is hereditarily separable. Finally, we prove that for any $T_1$-space $X$, $|X| \le L(X)^{\Delta (X)}$, which gives a partial answer to a question of Basile, Bella, and Ridderbos (2011). As a corollary, we show that $|X| \le e(X)^{\omega }$ for any semi-stratifiable space $X$.
LA - eng
KW - semi-stratifiable space; separable space; dense subset; feebly compact space; $\omega $-monolithic space; property $DC(\omega _1)$; star countable extent space; cardinal equality; countable chain condition; perfect space; $G^*_\delta $-diagonal
UR - http://eudml.org/doc/294556
ER -

References

top
  1. Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G., 10.2478/s11533-011-0018-y, Cent. Eur. J. Math. 9 (2011), 603-615. (2011) Zbl1246.54017MR2784032DOI10.2478/s11533-011-0018-y
  2. Alas, O. T., Junqueira, L. R., Wilson, R. G., 10.1016/j.topol.2010.12.012, Topology Appl. 158 (2011), 620-626. (2011) Zbl1226.54023MR2765618DOI10.1016/j.topol.2010.12.012
  3. Arhangel'skii, A. A., Buzyakova, R. Z., The rank of the diagonal and submetrizability, Commentat. Math. Univ. Carol. 47 (2006), 585-597. (2006) Zbl1150.54335MR2337413
  4. Basile, D., Bella, A., Ridderbos, G. J., Weak extent, submetrizability and diagonal degrees, Houston J. Math. 40 (2014), 255-266. (2014) Zbl1293.54003MR3210565
  5. Creede, G. D., 10.2140/pjm.1970.32.47, Pac. J. Math. 32 (1970), 47-54. (1970) Zbl0189.23304MR0254799DOI10.2140/pjm.1970.32.47
  6. Engelking, R., General Topology, Sigma Series in Pure Mathematics 6. Heldermann, Berlin (1989). (1989) Zbl0684.54001MR1039321
  7. Gotchev, I. S., Cardinalities of weakly Lindelöf spaces with regular G κ -diagonals, Avaible at https://scirate.com/arxiv/1504.01785. MR3958260
  8. Gruenhage, G., 10.1016/B978-0-444-86580-9.50013-6, Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 423-501 K. Kunen et al. (1984) Zbl0555.54015MR0776629DOI10.1016/B978-0-444-86580-9.50013-6
  9. Hodel, R., Cardinal functions. I, Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 1-61 K. Kunen et al. (1984) Zbl0559.54003MR0776620
  10. Ikenaga, S., Topological concept between Lindelöf and Pseudo-Lindelöf, Research Reports of Nara National College of Technology 26 (1990), 103-108 Japanese. (1990) 
  11. Juhász, I., Cardinal Functions in Topology, Mathematical Centre Tracts 34. Mathematisch Centrum, Amsterdam (1971). (1971) Zbl0224.54004MR0340021
  12. Rojas-Sánchez, A. D., Tamariz-Mascarúa, Á., 10.14712/1213-7243.2015.176, Commentat. Math. Univ. Carol. 57 (2016), 381-395. (2016) Zbl06674888MR3554518DOI10.14712/1213-7243.2015.176
  13. Šapirovskij, B. E., On separability and metrizability of spaces with Souslin's condition, Sov. Math. Dokl. 13 (1972), 1633-1638 translation from Dokl. Akad. Nauk SSSR 207 1972 800-803. (1972) Zbl0268.54007MR0322801
  14. Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J., 10.1016/0166-8641(91)90077-Y, Topology Appl. 39 (1991), 71-103. (1991) Zbl0743.54007MR1103993DOI10.1016/0166-8641(91)90077-Y
  15. Wiscamb, M. R., 10.2307/2036596, Proc. Am. Math. Soc. 23 (1969), 608-612. (1969) Zbl0184.26304MR0248744DOI10.2307/2036596
  16. Xuan, W. F., 10.1016/j.topol.2017.02.064, Topology Appl. 221 (2017), 51-58. (2017) Zbl1376.54026MR3624444DOI10.1016/j.topol.2017.02.064
  17. Yu, Z., 10.2478/s11533-012-0030-x, Cent. Eur. J. Math. 10 (2012), 1067-1070. (2012) Zbl1243.54042MR2902235DOI10.2478/s11533-012-0030-x
  18. Zenor, P., 10.2140/pjm.1972.40.759, Pac. J. Math. 40 (1972), 759-763. (1972) Zbl0213.49504MR0307195DOI10.2140/pjm.1972.40.759

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.