Some results on semi-stratifiable spaces
Mathematica Bohemica (2019)
- Volume: 144, Issue: 2, page 113-123
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topXuan, Wei-Feng, and Song, Yan-Kui. "Some results on semi-stratifiable spaces." Mathematica Bohemica 144.2 (2019): 113-123. <http://eudml.org/doc/294556>.
@article{Xuan2019,
abstract = {We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: (1) If $X$ is a semi-stratifiable space, then $X$ is separable if and only if $X$ is $DC(\omega _1)$; (2) If $X$ is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then $X$ is separable; (3) Let $X$ be a $\omega $-monolithic star countable extent semi-stratifiable space. If $t(X)=\omega $ and $d(X) \le \omega _1$, then $X$ is hereditarily separable. Finally, we prove that for any $T_1$-space $X$, $|X| \le L(X)^\{\Delta (X)\}$, which gives a partial answer to a question of Basile, Bella, and Ridderbos (2011). As a corollary, we show that $|X| \le e(X)^\{\omega \}$ for any semi-stratifiable space $X$.},
author = {Xuan, Wei-Feng, Song, Yan-Kui},
journal = {Mathematica Bohemica},
keywords = {semi-stratifiable space; separable space; dense subset; feebly compact space; $\omega $-monolithic space; property $DC(\omega _1)$; star countable extent space; cardinal equality; countable chain condition; perfect space; $G^*_\delta $-diagonal},
language = {eng},
number = {2},
pages = {113-123},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on semi-stratifiable spaces},
url = {http://eudml.org/doc/294556},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Xuan, Wei-Feng
AU - Song, Yan-Kui
TI - Some results on semi-stratifiable spaces
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 2
SP - 113
EP - 123
AB - We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: (1) If $X$ is a semi-stratifiable space, then $X$ is separable if and only if $X$ is $DC(\omega _1)$; (2) If $X$ is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then $X$ is separable; (3) Let $X$ be a $\omega $-monolithic star countable extent semi-stratifiable space. If $t(X)=\omega $ and $d(X) \le \omega _1$, then $X$ is hereditarily separable. Finally, we prove that for any $T_1$-space $X$, $|X| \le L(X)^{\Delta (X)}$, which gives a partial answer to a question of Basile, Bella, and Ridderbos (2011). As a corollary, we show that $|X| \le e(X)^{\omega }$ for any semi-stratifiable space $X$.
LA - eng
KW - semi-stratifiable space; separable space; dense subset; feebly compact space; $\omega $-monolithic space; property $DC(\omega _1)$; star countable extent space; cardinal equality; countable chain condition; perfect space; $G^*_\delta $-diagonal
UR - http://eudml.org/doc/294556
ER -
References
top- Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G., 10.2478/s11533-011-0018-y, Cent. Eur. J. Math. 9 (2011), 603-615. (2011) Zbl1246.54017MR2784032DOI10.2478/s11533-011-0018-y
- Alas, O. T., Junqueira, L. R., Wilson, R. G., 10.1016/j.topol.2010.12.012, Topology Appl. 158 (2011), 620-626. (2011) Zbl1226.54023MR2765618DOI10.1016/j.topol.2010.12.012
- Arhangel'skii, A. A., Buzyakova, R. Z., The rank of the diagonal and submetrizability, Commentat. Math. Univ. Carol. 47 (2006), 585-597. (2006) Zbl1150.54335MR2337413
- Basile, D., Bella, A., Ridderbos, G. J., Weak extent, submetrizability and diagonal degrees, Houston J. Math. 40 (2014), 255-266. (2014) Zbl1293.54003MR3210565
- Creede, G. D., 10.2140/pjm.1970.32.47, Pac. J. Math. 32 (1970), 47-54. (1970) Zbl0189.23304MR0254799DOI10.2140/pjm.1970.32.47
- Engelking, R., General Topology, Sigma Series in Pure Mathematics 6. Heldermann, Berlin (1989). (1989) Zbl0684.54001MR1039321
- Gotchev, I. S., Cardinalities of weakly Lindelöf spaces with regular -diagonals, Avaible at https://scirate.com/arxiv/1504.01785. MR3958260
- Gruenhage, G., 10.1016/B978-0-444-86580-9.50013-6, Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 423-501 K. Kunen et al. (1984) Zbl0555.54015MR0776629DOI10.1016/B978-0-444-86580-9.50013-6
- Hodel, R., Cardinal functions. I, Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 1-61 K. Kunen et al. (1984) Zbl0559.54003MR0776620
- Ikenaga, S., Topological concept between Lindelöf and Pseudo-Lindelöf, Research Reports of Nara National College of Technology 26 (1990), 103-108 Japanese. (1990)
- Juhász, I., Cardinal Functions in Topology, Mathematical Centre Tracts 34. Mathematisch Centrum, Amsterdam (1971). (1971) Zbl0224.54004MR0340021
- Rojas-Sánchez, A. D., Tamariz-Mascarúa, Á., 10.14712/1213-7243.2015.176, Commentat. Math. Univ. Carol. 57 (2016), 381-395. (2016) Zbl06674888MR3554518DOI10.14712/1213-7243.2015.176
- Šapirovskij, B. E., On separability and metrizability of spaces with Souslin's condition, Sov. Math. Dokl. 13 (1972), 1633-1638 translation from Dokl. Akad. Nauk SSSR 207 1972 800-803. (1972) Zbl0268.54007MR0322801
- Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J., 10.1016/0166-8641(91)90077-Y, Topology Appl. 39 (1991), 71-103. (1991) Zbl0743.54007MR1103993DOI10.1016/0166-8641(91)90077-Y
- Wiscamb, M. R., 10.2307/2036596, Proc. Am. Math. Soc. 23 (1969), 608-612. (1969) Zbl0184.26304MR0248744DOI10.2307/2036596
- Xuan, W. F., 10.1016/j.topol.2017.02.064, Topology Appl. 221 (2017), 51-58. (2017) Zbl1376.54026MR3624444DOI10.1016/j.topol.2017.02.064
- Yu, Z., 10.2478/s11533-012-0030-x, Cent. Eur. J. Math. 10 (2012), 1067-1070. (2012) Zbl1243.54042MR2902235DOI10.2478/s11533-012-0030-x
- Zenor, P., 10.2140/pjm.1972.40.759, Pac. J. Math. 40 (1972), 759-763. (1972) Zbl0213.49504MR0307195DOI10.2140/pjm.1972.40.759
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.