On centralizer of semiprime inverse semiring
Discussiones Mathematicae General Algebra and Applications (2016)
- Volume: 36, Issue: 1, page 71-84
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topS. Sara, M. Aslam, and M.A. Javed. "On centralizer of semiprime inverse semiring." Discussiones Mathematicae General Algebra and Applications 36.1 (2016): 71-84. <http://eudml.org/doc/286926>.
@article{S2016,
abstract = {Let S be 2-torsion free semiprime inverse semiring satisfying A₂ condition of Bandlet and Petrich [1]. We investigate, when an additive mapping T on S becomes centralizer.},
author = {S. Sara, M. Aslam, M.A. Javed},
journal = {Discussiones Mathematicae General Algebra and Applications},
keywords = {inverse semiring; semiprime inverse semiring; commutators; left(right) centralizer},
language = {eng},
number = {1},
pages = {71-84},
title = {On centralizer of semiprime inverse semiring},
url = {http://eudml.org/doc/286926},
volume = {36},
year = {2016},
}
TY - JOUR
AU - S. Sara
AU - M. Aslam
AU - M.A. Javed
TI - On centralizer of semiprime inverse semiring
JO - Discussiones Mathematicae General Algebra and Applications
PY - 2016
VL - 36
IS - 1
SP - 71
EP - 84
AB - Let S be 2-torsion free semiprime inverse semiring satisfying A₂ condition of Bandlet and Petrich [1]. We investigate, when an additive mapping T on S becomes centralizer.
LA - eng
KW - inverse semiring; semiprime inverse semiring; commutators; left(right) centralizer
UR - http://eudml.org/doc/286926
ER -
References
top- [1] H.J. Bandlet and M. Petrich, Subdirect products of rings and distrbutive lattics, Proc. Edin Math. Soc. 25 (1982), 135-171. doi: 10.1017/s0013091500016643
- [2] M. Bresar and Borut Zalar, On the structure of Jordan *-derivations, Colloq. Math. 63 (2) (1992) http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0786.46045, 163-171.
- [3] J.S. Golan, The theory of semirings with applications in mathematics and theoretical computer science (John Wiley and Sons. Inc., New York, 1992). doi: 10.1007/978-94-015-9333-5_-13 Zbl0780.16036
- [4] M.A Javed, M. Aslam and M. Hussain, On condition (A₂) of Bandlet and Petrich for inverse Semirings, Int. Mathematical Forum 7 (59) (2012) http://www.m-hikari.com/imf/imf-2012/57-60-2012/aslamIMF57-60-2012.pdf, 2903-2914. Zbl1278.16043
- [5] U. Habisch and H.J. Weinert, Semirings-Algebraic theory and applications in computer science (World Scientific, 1993). doi: 10.1142/3903
- [6] P.H. Karvellas, Inversive semirings, J. Austral. Math. Soc. 18 (1974), 277-288. doi: 10.1017/s1446788700022850 Zbl0301.16029
- [7] V.J Khanna, Lattices and Boolean Algebras (Vikas Publishing House Pvt. Ltd., 2004).
- [8] M.K. Sen, S.K. Maity and K.P Shum, Clifford semirings and generalized clifford semirings, Taiwanese J. Math. 9 (2005) http://journal.tms.org.tw/index.php/TJM/article/view/1014, 433-444. Zbl1091.16028
- [9] M.K. Sen and S.K. Maity, Regular additively inverse semirings, Acta Math. Univ. Comenianae 1 (2006) http://eudml.org/doc/129834, 137-146. Zbl1160.16309
- [10] J. Vukman, Centralizers of semiprime rings, Comment. Math. Univ. Carolinae 42 (2001) http://hdl.handle.net/10338.dmlcz/118920, 101-108. Zbl1057.16029
- [11] J. Vukman, Jordan left derivation on semiprime rings, Math. Jour. Okayama Univ. 39 (1997) http://www.math.okayama-u.ac.jp/mjou/mjou1-46/mjou_pdf/mjou_39/mjou_39_001.pdf, 1-6. Zbl0937.16044
- [12] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991)http://hdl.handle.net/10338.dmlcz/118440, 609-614. Zbl0746.16011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.