On centralizer of semiprime inverse semiring

S. Sara; M. Aslam; M.A. Javed

Discussiones Mathematicae General Algebra and Applications (2016)

  • Volume: 36, Issue: 1, page 71-84
  • ISSN: 1509-9415

Abstract

top
Let S be 2-torsion free semiprime inverse semiring satisfying A₂ condition of Bandlet and Petrich [1]. We investigate, when an additive mapping T on S becomes centralizer.

How to cite

top

S. Sara, M. Aslam, and M.A. Javed. "On centralizer of semiprime inverse semiring." Discussiones Mathematicae General Algebra and Applications 36.1 (2016): 71-84. <http://eudml.org/doc/286926>.

@article{S2016,
abstract = {Let S be 2-torsion free semiprime inverse semiring satisfying A₂ condition of Bandlet and Petrich [1]. We investigate, when an additive mapping T on S becomes centralizer.},
author = {S. Sara, M. Aslam, M.A. Javed},
journal = {Discussiones Mathematicae General Algebra and Applications},
keywords = {inverse semiring; semiprime inverse semiring; commutators; left(right) centralizer},
language = {eng},
number = {1},
pages = {71-84},
title = {On centralizer of semiprime inverse semiring},
url = {http://eudml.org/doc/286926},
volume = {36},
year = {2016},
}

TY - JOUR
AU - S. Sara
AU - M. Aslam
AU - M.A. Javed
TI - On centralizer of semiprime inverse semiring
JO - Discussiones Mathematicae General Algebra and Applications
PY - 2016
VL - 36
IS - 1
SP - 71
EP - 84
AB - Let S be 2-torsion free semiprime inverse semiring satisfying A₂ condition of Bandlet and Petrich [1]. We investigate, when an additive mapping T on S becomes centralizer.
LA - eng
KW - inverse semiring; semiprime inverse semiring; commutators; left(right) centralizer
UR - http://eudml.org/doc/286926
ER -

References

top
  1. [1] H.J. Bandlet and M. Petrich, Subdirect products of rings and distrbutive lattics, Proc. Edin Math. Soc. 25 (1982), 135-171. doi: 10.1017/s0013091500016643 
  2. [2] M. Bresar and Borut Zalar, On the structure of Jordan *-derivations, Colloq. Math. 63 (2) (1992) http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0786.46045, 163-171. 
  3. [3] J.S. Golan, The theory of semirings with applications in mathematics and theoretical computer science (John Wiley and Sons. Inc., New York, 1992). doi: 10.1007/978-94-015-9333-5_-13 Zbl0780.16036
  4. [4] M.A Javed, M. Aslam and M. Hussain, On condition (A₂) of Bandlet and Petrich for inverse Semirings, Int. Mathematical Forum 7 (59) (2012) http://www.m-hikari.com/imf/imf-2012/57-60-2012/aslamIMF57-60-2012.pdf, 2903-2914. Zbl1278.16043
  5. [5] U. Habisch and H.J. Weinert, Semirings-Algebraic theory and applications in computer science (World Scientific, 1993). doi: 10.1142/3903 
  6. [6] P.H. Karvellas, Inversive semirings, J. Austral. Math. Soc. 18 (1974), 277-288. doi: 10.1017/s1446788700022850 Zbl0301.16029
  7. [7] V.J Khanna, Lattices and Boolean Algebras (Vikas Publishing House Pvt. Ltd., 2004). 
  8. [8] M.K. Sen, S.K. Maity and K.P Shum, Clifford semirings and generalized clifford semirings, Taiwanese J. Math. 9 (2005) http://journal.tms.org.tw/index.php/TJM/article/view/1014, 433-444. Zbl1091.16028
  9. [9] M.K. Sen and S.K. Maity, Regular additively inverse semirings, Acta Math. Univ. Comenianae 1 (2006) http://eudml.org/doc/129834, 137-146. Zbl1160.16309
  10. [10] J. Vukman, Centralizers of semiprime rings, Comment. Math. Univ. Carolinae 42 (2001) http://hdl.handle.net/10338.dmlcz/118920, 101-108. Zbl1057.16029
  11. [11] J. Vukman, Jordan left derivation on semiprime rings, Math. Jour. Okayama Univ. 39 (1997) http://www.math.okayama-u.ac.jp/mjou/mjou1-46/mjou_pdf/mjou_39/mjou_39_001.pdf, 1-6. Zbl0937.16044
  12. [12] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991)http://hdl.handle.net/10338.dmlcz/118440, 609-614. Zbl0746.16011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.