Centralizers on semiprime rings
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 2, page 237-245
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topVukman, Joso. "Centralizers on semiprime rings." Commentationes Mathematicae Universitatis Carolinae 42.2 (2001): 237-245. <http://eudml.org/doc/248764>.
@article{Vukman2001,
abstract = {The main result: Let $R$ be a $2$-torsion free semiprime ring and let $T:R\rightarrow R$ be an additive mapping. Suppose that $T(xyx) = xT(y)x$ holds for all $x,y\in R$. In this case $T$ is a centralizer.},
author = {Vukman, Joso},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {prime ring; semiprime ring; derivation; Jordan derivation; Jordan triple derivation; left (right) centralizer; left (right) Jordan centralizer; centralizer; prime rings; semiprime rings; Jordan derivations; Jordan triple derivations; Jordan centralizers; left centralizers; additive mappings},
language = {eng},
number = {2},
pages = {237-245},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Centralizers on semiprime rings},
url = {http://eudml.org/doc/248764},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Vukman, Joso
TI - Centralizers on semiprime rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 2
SP - 237
EP - 245
AB - The main result: Let $R$ be a $2$-torsion free semiprime ring and let $T:R\rightarrow R$ be an additive mapping. Suppose that $T(xyx) = xT(y)x$ holds for all $x,y\in R$. In this case $T$ is a centralizer.
LA - eng
KW - prime ring; semiprime ring; derivation; Jordan derivation; Jordan triple derivation; left (right) centralizer; left (right) Jordan centralizer; centralizer; prime rings; semiprime rings; Jordan derivations; Jordan triple derivations; Jordan centralizers; left centralizers; additive mappings
UR - http://eudml.org/doc/248764
ER -
References
top- Brešar M., Vukman J., Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-322. (1988) MR0943433
- Brešar M., Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006. (1988) MR0929422
- Brešar M., Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228. (1989) MR1029414
- Cusack J., Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324. (1975) Zbl0327.16020MR0399182
- Herstein I.N., Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110. (1957) MR0095864
- Vukman J., An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolinae 40 (1999), 447-456. (1999) Zbl1014.16021MR1732490
- Zalar B., On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991), 609-614. (1991) Zbl0746.16011MR1159807
Citations in EuDML Documents
top- Motoshi Hongan, Nadeem Ur Rehman, Radwan Mohammed AL-Omary, Lie ideals and Jordan triple derivations in rings
- Muhammad Anwar Chaudhry, Mohammad S. Samman, Free actions on semiprime rings
- S. Sara, M. Aslam, M.A. Javed, On centralizer of semiprime inverse semiring
- Mohammad Ashraf, Mohammad Aslam Siddeeque, Abbas Hussain Shikeh, On the characterization of certain additive maps in prime -rings
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.