On centralizers of semiprime rings
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 4, page 609-614
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topZalar, Borut. "On centralizers of semiprime rings." Commentationes Mathematicae Universitatis Carolinae 32.4 (1991): 609-614. <http://eudml.org/doc/247321>.
@article{Zalar1991,
	abstract = {Let $\mathcal \{K\}$ be a semiprime ring and $T:\mathcal \{K\}\rightarrow \mathcal \{K\}$ an additive mapping such that $T(x^2)=T(x)x$ holds for all $x\in \mathcal \{K\}$. Then $T$ is a left centralizer of $\mathcal \{K\}$. It is also proved that Jordan centralizers and centralizers of $\mathcal \{K\}$ coincide.},
	author = {Zalar, Borut},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {semiprime ring; left centralizer; centralizer; Jordan centralizer; semi-prime free rings; additive maps; left centralizers; Jordan centralizers; right centralizers},
	language = {eng},
	number = {4},
	pages = {609-614},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {On centralizers of semiprime rings},
	url = {http://eudml.org/doc/247321},
	volume = {32},
	year = {1991},
}
TY  - JOUR
AU  - Zalar, Borut
TI  - On centralizers of semiprime rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 32
IS  - 4
SP  - 609
EP  - 614
AB  - Let $\mathcal {K}$ be a semiprime ring and $T:\mathcal {K}\rightarrow \mathcal {K}$ an additive mapping such that $T(x^2)=T(x)x$ holds for all $x\in \mathcal {K}$. Then $T$ is a left centralizer of $\mathcal {K}$. It is also proved that Jordan centralizers and centralizers of $\mathcal {K}$ coincide.
LA  - eng
KW  - semiprime ring; left centralizer; centralizer; Jordan centralizer; semi-prime free rings; additive maps; left centralizers; Jordan centralizers; right centralizers
UR  - http://eudml.org/doc/247321
ER  - 
References
top- Brešar M., Vukman J., On some additive mapping in rings with involution, Aequationes Math. 38 (1989), 178-185. (1989) MR1018911
- Brešar M., Zalar B., On the structure of Jordan -derivations, Colloquium Math., to appear. MR1180629
- Herstein I.N., Topics in ring theory, University of Chicago Press, 1969. Zbl0232.16001MR0271135
- Herstein I.N., Theory of rings, University of Chicago Press, 1961.
- Johnson B.E., Sinclair A.M., Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073. (1968) Zbl0179.18103MR0239419
- Šemrl P., Quadratic functionals and Jordan -derivations, Studia Math. 97 (1991), 157-165. (1991) MR1100685
Citations in EuDML Documents
top- Joso Vukman, Centralizers on prime and semiprime rings
- Joso Vukman, An identity related to centralizers in semiprime rings
- Joso Vukman, Centralizers on semiprime rings
- Motoshi Hongan, Nadeem Ur Rehman, Radwan Mohammed AL-Omary, Lie ideals and Jordan triple derivations in rings
- Muhammad Anwar Chaudhry, Mohammad S. Samman, Free actions on semiprime rings
- S. Sara, M. Aslam, M.A. Javed, On centralizer of semiprime inverse semiring
- Mohammad Ashraf, Mohammad Aslam Siddeeque, Abbas Hussain Shikeh, On the characterization of certain additive maps in prime -rings
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 