Holomorphic semigroups of holomorphic isometries

Edoardo Vesentini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1988)

  • Volume: 82, Issue: 1, page 43-49
  • ISSN: 1120-6330

Abstract

top
A previous paper was devoted to the construction of non-trivial holomorphic families of holomorphic isometries for the Carathéodory metric of a bounded domain in a complex Banach space, fixing a point in the domain. The present article shows that such a family cannot exist if it contains a strongly continuous one parameter semigroup.

How to cite

top

Vesentini, Edoardo. "Holomorphic semigroups of holomorphic isometries." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 82.1 (1988): 43-49. <http://eudml.org/doc/287230>.

@article{Vesentini1988,
abstract = {A previous paper was devoted to the construction of non-trivial holomorphic families of holomorphic isometries for the Carathéodory metric of a bounded domain in a complex Banach space, fixing a point in the domain. The present article shows that such a family cannot exist if it contains a strongly continuous one parameter semigroup.},
author = {Vesentini, Edoardo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Carathéodory and Kobayashi metrics; Holomorphic isometries; holomorphic semigroups of holomorphic isometries; strongly continuous one parameter semigroup},
language = {eng},
month = {3},
number = {1},
pages = {43-49},
publisher = {Accademia Nazionale dei Lincei},
title = {Holomorphic semigroups of holomorphic isometries},
url = {http://eudml.org/doc/287230},
volume = {82},
year = {1988},
}

TY - JOUR
AU - Vesentini, Edoardo
TI - Holomorphic semigroups of holomorphic isometries
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1988/3//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 1
SP - 43
EP - 49
AB - A previous paper was devoted to the construction of non-trivial holomorphic families of holomorphic isometries for the Carathéodory metric of a bounded domain in a complex Banach space, fixing a point in the domain. The present article shows that such a family cannot exist if it contains a strongly continuous one parameter semigroup.
LA - eng
KW - Carathéodory and Kobayashi metrics; Holomorphic isometries; holomorphic semigroups of holomorphic isometries; strongly continuous one parameter semigroup
UR - http://eudml.org/doc/287230
ER -

References

top
  1. DINEEN, S., TIMONEY, R.M. and VIGUÈ, J.-P. (1985) - Pseudodistances invariantes sur les domaines d'un espace localement convexe, «Ann. Scuola Norm. Sup. Pisa», (4) 12, 515-529. Zbl0603.46052MR848840
  2. FRANZONI, T. and VESENTINI, E. (1980) - Holomorphic maps and invariant distances, North-Holland, Amsterdam-New York-Oxford, 1985. Zbl0447.46040MR563329
  3. GREINER, G. and NAGEL, R. (1986) - Spectral theory of semigroups on Banach spaces, in R. NAGEL (Editor), One-parameter semi groups of positive operators, Lecture Notes in Mathematics, n. 1184, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 60-97. Zbl0585.47030
  4. HARRIS, L.A. (1979) - Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, in J.A. BARROSO (Editor), Advances in holomorphy, North-Holland, Amsterdam-New York-Oxford, 354-406. Zbl0409.46053MR520667
  5. HILLE, E. and PHILLIPS, R.S. (1957) - Functional analysis and semigroups, «Amer. Math. Soc. Colloquium Publ.», 31, «Amer. Math. Soc.», Providence, R.I. Zbl0078.10004MR89373
  6. PAZY, A. (1983) - Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo. Zbl0516.47023MR710486DOI10.1007/978-1-4612-5561-1
  7. REIFFEN, H.-J. (1965) - Die Carathéodorysche Distanz und ihre zugehörige Dijferentialmetrik, «Math. Annalen», 161, 315-324. Zbl0141.08803MR196133
  8. VESENTINI, E. (1982) - Complex geodesies and holomorphic maps, «Symposia Mathematica», 26, 211-230. Zbl0506.32008MR663034
  9. VESENTINI, E. (1987) - Holomorphic families of holomorphic isometries, in C.A. BERENSTEIN (Editor), Complex Analysis III, Lecture Notes in Mathematics, n. 1277, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo, 290-302. Zbl0643.32009MR922341DOI10.1007/BFb0078252

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.