Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids
- Volume: 82, Issue: 4, page 711-715
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topMaier, Giulio, and Novati, Giorgio. "Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 82.4 (1988): 711-715. <http://eudml.org/doc/287244>.
@article{Maier1988,
abstract = {For the finite-step, backward-difference analysis of elastic-plastic solids in small strains, a kinematic (potential energy) and a static (complementary energy) extremum property of the step solution are given under the following hypotheses: each yield function is the sum of an equivalent stress and a yield limit; the former is a positively homogeneous function of order one of stresses, the latter a nonlinear function of nondecreasing internal variables; suitable conditions of "material stability" are assumed. This communication anticipates results to be presented elsewhere in an extended version. Therefore, proofs of the statements and various comments are omitted.},
author = {Maier, Giulio, Novati, Giorgio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Computational Plasticity; Extremum theorems; Hardening; small strains; potential energy; complementary energy; yield function; sum of equivalent stress and yield limit; internal variables; material stability; hardening},
language = {eng},
month = {12},
number = {4},
pages = {711-715},
publisher = {Accademia Nazionale dei Lincei},
title = {Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids},
url = {http://eudml.org/doc/287244},
volume = {82},
year = {1988},
}
TY - JOUR
AU - Maier, Giulio
AU - Novati, Giorgio
TI - Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1988/12//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 4
SP - 711
EP - 715
AB - For the finite-step, backward-difference analysis of elastic-plastic solids in small strains, a kinematic (potential energy) and a static (complementary energy) extremum property of the step solution are given under the following hypotheses: each yield function is the sum of an equivalent stress and a yield limit; the former is a positively homogeneous function of order one of stresses, the latter a nonlinear function of nondecreasing internal variables; suitable conditions of "material stability" are assumed. This communication anticipates results to be presented elsewhere in an extended version. Therefore, proofs of the statements and various comments are omitted.
LA - eng
KW - Computational Plasticity; Extremum theorems; Hardening; small strains; potential energy; complementary energy; yield function; sum of equivalent stress and yield limit; internal variables; material stability; hardening
UR - http://eudml.org/doc/287244
ER -
References
top- MARTIN, J.B., REDDY, B.D., GRIFFIN, T.B. and BIRD, W.W. (1987) - Applications of Mathematical Programming Concepts to Incremental Elastic-Plastic Analysis, Engineering Structures, 9, 171- 180.
- ORTIZ, M., POPOV, E.P. (1985) - Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations, Int. J. Num. Meth. Engng., 21, 1561-1576. Zbl0585.73057MR810515DOI10.1002/nme.1620210902
- SIMO, J.C. and TAYLOR, R.L. (1986) - A Return Mapping Algorithm for Plane Stress Elastoplasticity, Int J. Num. Meth. Engng., 22, 649-670. Zbl0585.73059MR839299DOI10.1002/nme.1620220310
- REDDY, B.D. and GRIFFIN, T.B. (1986) - Variational Principles and Convergence of Finite Element Approximations of Holonomic Elastic-Plastic Problems, UCT/CSIR Applied Mechanics Research Unit, Technical Report, N. 83. Zbl0618.73034
- MAIER, G., DE DONATO, O. and CORRADI, L. (1972) - Inelastic Analysis of Reinforced Concrete Frames by Quadratic Programming, In: Inelasticity and Non-Linearity in Structural Concrete, University of Waterloo Press, Study N. 8, paper 10, 265-288.
- DE DONATO, O. and MAIER, G. (1973) - Finite Element Elastoplastic Analysis by Quadratic Programming: the Multistage Method, Proc. 2nd Int. Conf. on Structural Mechanics in Reactor Technology (SMIRT), Berlin, Vol. V, Part M.
- FRANCHI, A. and GENNA, F. (1987) - A Numerical Scheme for Integrating the Rate Plasticity Equations with an "A Priori" Error Control, Comput. Meth. Appl. Mech. Engng., 60 (3), 317-342. Zbl0611.73038MR878836DOI10.1016/0045-7825(87)90138-1
- MAIER, G. and MUNRO, J. (1982) - Mathematical Programming Methods in Engineering Plastic Analysis, Appl. Mech. Rev., 35 (12), 1631-1643.
- MAIER, G. (1968) - Quadratic Programming and Theory of Elastic-Perfectly Plastic Structures, Meccanica, 3 (4), 265-273. Zbl0181.53704MR266487
- MAIER, G. (1969) - Teoremi di Minimo in Termini Finiti per Continui Elastoplastici con Leggi Costitutive Linearizzate a Tratti, Rendiconti dell'Istituto Lombardo di Scienze e Lettere, Vol. 103, 1066-1080. Zbl0213.28002MR263297
- MAIER, G. (1969) - Complementary Plastic Work Theorems in Piecewise Linear Elastoplasticity, Int. J. Solids Struct., 5, 261-270. Zbl0164.27101
- RESENDE, L. and MARTIN, J.B. (1985) - Formulation of Drucker-Prager Cap Model, ASCE-J. of Eng. Mech., 111 (7), 855-881.
- CAPURSO, M. (1969) - Principi di Minimo per la Soluzione Incrementale dei Problemi Elastoplastici, Rend. Acc. Naz. Lincei, Cl. Sci. Zbl0187.48003
- CAPURSO, M. and MAIER, G. (1970) - Incremental Elastoplastic Analysis and Quadratic Optimization, Meccanica, 4 (1), 107-116. Zbl0198.58301
- FRANCHI, A. and GENNA, F. (1984) - Minimum Principles and Initial Stress Method in Elastic-Plastic Analysis, Engng. Struct.6 (1), 65-69.
- PONTER, A.R.S. and MARTIN, J.B. (1979) - Some Extremal Properties and Energy Theorems for Inelastic Materials and their Relationship to the Deformation Theory of Plasticity, J. Mech. Phys. Solids, 20, 281-300. Zbl0241.73003MR349113
- MARTIN, J.B. and PONTER, A.R.S. (1972) - On Dual Energy Theorems for a Class of Elastic-Plastic Problems Due to G. Maier, J. Mech. Phys. Solids, 20, 301-306. Zbl0241.73008MR349114
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.