Time optimal control of a second order nonlinear plant
Krishnan Balachandran; D. Somasundaram
Kybernetika (1984)
- Volume: 20, Issue: 3, page 244-249
- ISSN: 0023-5954
Access Full Article
topHow to cite
topReferences
top- M. Athans, P. L. Falb, Optimal Control, McGraw Hill, New York 1966. (1966) Zbl0196.46303MR0204181
- E. B. Lee, L. Markus, Foundations of Optimal Control Theory, John Wiley, New York 1967. (1967) Zbl0159.13201MR0220537
- J. L. G. Almuzara, I. Flugge-Lotz, Minimum time control of a nonlinear system, J. Differential Equations 4 (1968), 1, 12-39. (1968) MR0218710
- A. Boettiger, V. B. Haas, Synthesis of time-optimal control of a second order nonlinear process, J. Optim. Theory Appl. 4 (1969), 1, 22-39. (1969) Zbl0167.09102MR0249775
- E. M. James, Time optimal control and the Van der Pol oscillator, J. Inst. Math. Appl. 13 (1974), 1, 67-81. (1974) Zbl0275.49039MR0346633
- I. Vakilzadeh, Bang-bang control of a plant with one positive and one negative real pole, J. Optim. Theory Appl. 24 (1978), 2, 315- 324. (1978) MR0528777
- I. Vakilzadeh, A. A. Keshavarz, Bang-bang control of a second order nonlinear stable plant with second order nonlinearity, Kybernetika 18 (1982), 1, 66-71. (1982)
- I. Vakilzadeh, A. A. Keshavarz, Bang-bang control of a second order nonlinear unstable plant with third order nonlinearity, Internat. J. Control 34 (1981), 3, 457-463. (1981) MR0631291
- V. G. Boltyanskii, An example of nonlinear synthesis, (in Russian). Differencial'nye Uravneniya 6 (1970), 4, 644-649; (in English) Differential Equations 6 (1970), 4, 495-498. (1970) MR0305203