Sulle forme polarizzanti i coefficienti del polinomio caratteristico di una matrice

Renzo Mazzocco

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1986)

  • Volume: 80, Issue: 1-2, page 1-5
  • ISSN: 1120-6330

Abstract

top
The multilinear forms, obtained by polarizing the coefficients of the characteristic polynomial of a matrix, are considered. A general relation (formula A) between such forms is proved. It follows in particular a rational expression for the above-mentioned coefficients (formula C), which is in a sense analogous to Newton's formulas, but with the use of the determinant function instead of the trace function.

How to cite

top

Mazzocco, Renzo. "Sulle forme polarizzanti i coefficienti del polinomio caratteristico di una matrice." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 80.1-2 (1986): 1-5. <http://eudml.org/doc/287353>.

@article{Mazzocco1986,
author = {Mazzocco, Renzo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {multilinear forms; characteristic polynomial; Newton's formulas; determinant function; trace function},
language = {ita},
month = {1},
number = {1-2},
pages = {1-5},
publisher = {Accademia Nazionale dei Lincei},
title = {Sulle forme polarizzanti i coefficienti del polinomio caratteristico di una matrice},
url = {http://eudml.org/doc/287353},
volume = {80},
year = {1986},
}

TY - JOUR
AU - Mazzocco, Renzo
TI - Sulle forme polarizzanti i coefficienti del polinomio caratteristico di una matrice
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1986/1//
PB - Accademia Nazionale dei Lincei
VL - 80
IS - 1-2
SP - 1
EP - 5
LA - ita
KW - multilinear forms; characteristic polynomial; Newton's formulas; determinant function; trace function
UR - http://eudml.org/doc/287353
ER -

References

top
  1. BOTT, R. and CHERN, S.S. (1965) - Hermitian vector bundles and the equidistribution of the zeroes of their holomorfic sections, «Acta mathematica», 114, 71-112. Zbl0148.31906MR185607
  2. HOHN, F.E. (1973) - Elementary matrix algebra, The Macmillan Company, New York. Zbl0086.01303MR349697
  3. KOBAYASHI, S. and NOMIZU, K. (1969) - Foundations of differential geometry, vol. II, Interscience Publishers, New York. Zbl0119.37502MR238225
  4. ROWEN, L.H. (1980) - Polinomial identities in ring theory, Academic Press, New York. Zbl0461.16001MR576061
  5. SHAW, R. (1983) - Linear algebra and group representations, vol. II, Academic Press Inc., London. Zbl0495.15002MR701854

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.