On the Aronszajn property for integral equations in Banach space
- Volume: 83, Issue: 1, page 93-99
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topSzufla, Stanisław. "On the Aronszajn property for integral equations in Banach space." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 83.1 (1989): 93-99. <http://eudml.org/doc/287520>.
@article{Szufla1989,
abstract = {For the integral equation (1) below we prove the existence on an interval $J = [0, a]$ of a solution $x$ with values in a Banach space $E$, belonging to the class $L^\{p\}(J,E)$, $p>1$. Further, the set of solutions is shown to be a compact one in the sense of Aronszajn.},
author = {Szufla, Stanisław},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Integral equations; Banach spaces; Aronszajn property; Banach space; existence; compact absolute retracts},
language = {eng},
month = {12},
number = {1},
pages = {93-99},
publisher = {Accademia Nazionale dei Lincei},
title = {On the Aronszajn property for integral equations in Banach space},
url = {http://eudml.org/doc/287520},
volume = {83},
year = {1989},
}
TY - JOUR
AU - Szufla, Stanisław
TI - On the Aronszajn property for integral equations in Banach space
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 93
EP - 99
AB - For the integral equation (1) below we prove the existence on an interval $J = [0, a]$ of a solution $x$ with values in a Banach space $E$, belonging to the class $L^{p}(J,E)$, $p>1$. Further, the set of solutions is shown to be a compact one in the sense of Aronszajn.
LA - eng
KW - Integral equations; Banach spaces; Aronszajn property; Banach space; existence; compact absolute retracts
UR - http://eudml.org/doc/287520
ER -
References
top- ARONSZAJN, N., 1942. Le correspondant topologique de l'unicité dans la théorie des équations différentielles. Ann. of Math., 43: 730-738. Zbl0061.17106MR7195
- BROWDER, F.E. and GUPTA, C.P., 1969. Topological degree and nonlinear mappings of analytical type in Banach space. J. Math. Anal. Appl., 26: 390-402. Zbl0176.45401MR257826
- DEIMLING, K., 1977. Ordinary differential equations in Banach spaces. Lect. Notes Math., 596: Springer Verlag. Zbl0361.34050MR463601
- LAKSHMIKANTHAM, V. and LEELA, S., 1981. Nonlinear differential equations in abstract spaces. Pergamon Press. Zbl0456.34002MR616449
- MARTIN, R.H., 1976. Nonlinear operators and differential equations in Banach spaces. Wiley, New York. Zbl0333.47023MR492671
- MÖNCH, H., 1980. Boundary value problems for nonlinear ordinary differential equations of second order in Banach space. Nonlinear Analysis, 4: 985-999. Zbl0462.34041MR586861DOI10.1016/0362-546X(80)90010-3
- ORLICZ, W. and SZUFLA, S., 1982. On some classes of nonlinear Volterra integral equations in Banach spaces. Bull. Acad. Polon. Sci. Math., 30: 239-250. Zbl0501.45013MR673260
- SADOVSKII, B.N., 1972. Limit-compact and condensing operators. Russian Mah. Surveys, 27: 85-155. Zbl0243.47033MR428132
- SZUFLA, S., 1982. On the existence of solutions of differential equations in Banach spaces. Bull. Acad. Polon. Sci. Math., 30: 507-515. Zbl0532.34045MR718727
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.