Compositional models, Bayesian models and recursive factorization models
Kybernetika (2016)
- Volume: 52, Issue: 5, page 696-723
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMalvestuto, Francesco M.. "Compositional models, Bayesian models and recursive factorization models." Kybernetika 52.5 (2016): 696-723. <http://eudml.org/doc/287522>.
@article{Malvestuto2016,
abstract = {Compositional models are used to construct probability distributions from lower-order probability distributions. On the other hand, Bayesian models are used to represent probability distributions that factorize according to acyclic digraphs. We introduce a class of models, called recursive factorization models, to represent probability distributions that recursively factorize according to sequences of sets of variables, and prove that they have the same representation power as both compositional models generated by sequential expressions and Bayesian models. Moreover, we present a linear (graphical) algorithm for deciding if a conditional independence is valid in a given recursive factorization model.},
author = {Malvestuto, Francesco M.},
journal = {Kybernetika},
keywords = {Bayesian model; compositional model; conditional independence; Markov property; recursive model; sequential expression; Bayesian model; compositional model; conditional independence; Markov property; recursive model; sequential expression},
language = {eng},
number = {5},
pages = {696-723},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Compositional models, Bayesian models and recursive factorization models},
url = {http://eudml.org/doc/287522},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Malvestuto, Francesco M.
TI - Compositional models, Bayesian models and recursive factorization models
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 5
SP - 696
EP - 723
AB - Compositional models are used to construct probability distributions from lower-order probability distributions. On the other hand, Bayesian models are used to represent probability distributions that factorize according to acyclic digraphs. We introduce a class of models, called recursive factorization models, to represent probability distributions that recursively factorize according to sequences of sets of variables, and prove that they have the same representation power as both compositional models generated by sequential expressions and Bayesian models. Moreover, we present a linear (graphical) algorithm for deciding if a conditional independence is valid in a given recursive factorization model.
LA - eng
KW - Bayesian model; compositional model; conditional independence; Markov property; recursive model; sequential expression; Bayesian model; compositional model; conditional independence; Markov property; recursive model; sequential expression
UR - http://eudml.org/doc/287522
ER -
References
top- Aho, A. V., Hopcroft, J. E., Ullman, J. D., Data Structures and Algorithms., Addison-Wesley Pub. Co, Reading 1987. Zbl0487.68005MR0666695
- Bína, V., Jiroušek, R., 10.14736/kyb-2015-3-0525, Kybernetika 51 (2015), 525-539. Zbl1340.65011MR3391683DOI10.14736/kyb-2015-3-0525
- Geiger, D., Verma, T., Pearl, J., 10.1002/net.3230200504, Networks 20 (1990), 507-534. Zbl0724.05066MR1064736DOI10.1002/net.3230200504
- Jiroušek, R., 10.1023/a:1014591402750, In: Proc. XIII International Conference on Uncertainty in Artificial Intelligence (D. Geiger and P. P. Shenoy, eds.), Morgan Kaufmann, San Francisco 1997, pp. 274-281. DOI10.1023/a:1014591402750
- Jiroušek, R., 10.1023/a:1014591402750, Ann. Math. Artif. Intelligence 5 (2002), 215-226. Zbl1004.60010MR1899952DOI10.1023/a:1014591402750
- Jiroušek, R., 10.1080/03081079.2011.562627, Int. J. General Systems 40 (2011), 623-678. Zbl1252.68285MR2817988DOI10.1080/03081079.2011.562627
- Jiroušek, R., 10.1016/j.ijar.2012.06.012, Int. J. Approx. Reasoning 53 (2012), 1155-1167. Zbl1266.68177MR2971864DOI10.1016/j.ijar.2012.06.012
- Jiroušek, R., 10.1007/978-3-319-08795-5_53, In: Proc. XIV International Conference on Information Processing and Management of Uncertainty in Knowledge-Bases Systems (IPMU 2014) (A. Laurent et al., eds.), Part I, CCIS 442, pp. 517-526. DOI10.1007/978-3-319-08795-5_53
- Jiroušek, R., Kratochvíl, V., 10.1080/03081079.2014.934370, Int. J. General Systems 44 (2015), 2-25. MR3299901DOI10.1080/03081079.2014.934370
- Jiroušek, R., Shenoy, P. P., 10.1016/j.ijar.2013.02.002, Int. J. Approx. Reasoning 55 (2014), 277-293. Zbl1252.68310MR3133554DOI10.1016/j.ijar.2013.02.002
- Jiroušek, R., Vejnarová, J., 10.1002/int.10077, Int. J. Approx. Reasoning 18 (2003), 107-127. Zbl1029.68131DOI10.1002/int.10077
- Jiroušek, R., Vejnarová, J., Daniels, M., Composition models of belief functions., In: Proc. V Symp. on Imprecise Probabilities and Their Applications (G. De Cooman, J. Vejnarová and M. Zaffalon, eds.), Action M Agency, Prague 2007, pp. 243-252.
- Kratochvíl, V., 10.1016/j.ijar.2010.12.005, Int. J. of Approx. Reasoning 52 (2011), 599-612. Zbl1214.68400MR2787020DOI10.1016/j.ijar.2010.12.005
- Kratochvíl, V., 10.1016/j.ijar.2013.01.002, Int. J. Approx. Reasoning 54 (2013), 590-601. MR3041095DOI10.1016/j.ijar.2013.01.002
- Lauritzen, S. L., Graphical Models., Oxford University Press, Oxford 1996. MR1419991
- Lauritzen, S. L., Dawid, A. P., Larsen, B. N., Leimer, H.-G., 10.1002/net.3230200503, Networks 20 (1990), 491-505. Zbl0743.05065MR1064735DOI10.1002/net.3230200503
- Maier, D., The Theory of Relational Databases., Computer Science Press, 1983. Zbl0519.68082MR0691493
- Malvestuto, F. M., 10.1145/2638545, ACM Trans. Database Systems 39, (2014), 3, 1-31. MR3268995DOI10.1145/2638545
- Malvestuto, F. M., 10.14736/kyb-2014-3-0322, Kybernetika 50 (2014), 322-362. MR3245534DOI10.14736/kyb-2014-3-0322
- Malvestuto, F. M., 10.14736/kyb-2015-4-0541, Kybernetika 51 (2015), 541-570. MR3423187DOI10.14736/kyb-2015-4-0541
- Malvestuto, F. M., A general composition operator for probabilistic compositional models., Unpublished manuscript (2016).
- Pearl, J., Probabilistic Reasoning in Intelligent Systems., Morgan Kaufmann Pub., San Mateo 1988. Zbl0746.68089MR0965765
- Pourabbas, E., Shoshani, A., 10.1145/1206049.1206051, ACM Trans. Database Systems 32 (2007), 1, Article No. 2. DOI10.1145/1206049.1206051
- Tarjan, R. E., Yannakakis, M., 10.1137/0213035, SIAM J. Comput. 13 (1984), 566-579. Zbl0562.68055MR0749707DOI10.1137/0213035
- Verma, T., Pearl, J., Causal networks: semantics and expressiveness., In: Proc. IV Workshop on Uncertainty in Artificial Intelligence, St. Paul 1988, pp. 352-359.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.