Cardinalities of DCCC normal spaces with a rank 2-diagonal
Mathematica Bohemica (2016)
- Volume: 141, Issue: 4, page 457-461
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topXuan, Wei-Feng, and Shi, Wei-Xue. "Cardinalities of DCCC normal spaces with a rank 2-diagonal." Mathematica Bohemica 141.4 (2016): 457-461. <http://eudml.org/doc/287536>.
@article{Xuan2016,
abstract = {A topological space $X$ has a rank 2-diagonal if there exists a diagonal sequence on $X$ of rank $2$, that is, there is a countable family $\lbrace \mathcal \{U\}_n\colon n\in \omega \rbrace $ of open covers of $X$ such that for each $x \in X$, $\lbrace x\rbrace =\bigcap \lbrace \{\rm St\}^2(x, \mathcal \{U\}_n)\colon n \in \omega \rbrace $. We say that a space $X$ satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of $X$ is countable. We mainly prove that if $X$ is a DCCC normal space with a rank 2-diagonal, then the cardinality of $X$ is at most $\mathfrak \{c\}$. Moreover, we prove that if $X$ is a first countable DCCC normal space and has a $G_\delta $-diagonal, then the cardinality of $X$ is at most $\mathfrak \{c\}$.},
author = {Xuan, Wei-Feng, Shi, Wei-Xue},
journal = {Mathematica Bohemica},
keywords = {cardinality; Discrete Countable Chain Condition; normal space; rank 2-diagonal; $G_\delta $-diagonal},
language = {eng},
number = {4},
pages = {457-461},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cardinalities of DCCC normal spaces with a rank 2-diagonal},
url = {http://eudml.org/doc/287536},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Xuan, Wei-Feng
AU - Shi, Wei-Xue
TI - Cardinalities of DCCC normal spaces with a rank 2-diagonal
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 4
SP - 457
EP - 461
AB - A topological space $X$ has a rank 2-diagonal if there exists a diagonal sequence on $X$ of rank $2$, that is, there is a countable family $\lbrace \mathcal {U}_n\colon n\in \omega \rbrace $ of open covers of $X$ such that for each $x \in X$, $\lbrace x\rbrace =\bigcap \lbrace {\rm St}^2(x, \mathcal {U}_n)\colon n \in \omega \rbrace $. We say that a space $X$ satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of $X$ is countable. We mainly prove that if $X$ is a DCCC normal space with a rank 2-diagonal, then the cardinality of $X$ is at most $\mathfrak {c}$. Moreover, we prove that if $X$ is a first countable DCCC normal space and has a $G_\delta $-diagonal, then the cardinality of $X$ is at most $\mathfrak {c}$.
LA - eng
KW - cardinality; Discrete Countable Chain Condition; normal space; rank 2-diagonal; $G_\delta $-diagonal
UR - http://eudml.org/doc/287536
ER -
References
top- Arhangel'skii, A. V., Buzyakova, R. Z., The rank of the diagonal and submetrizability, Commentat. Math. Univ. Carol. 47 (2006), 585-597. (2006) Zbl1150.54335MR2337413
- Buzyakova, R. Z., 10.1016/j.topol.2005.06.004, Topology Appl. 153 (2006), 1696-1698. (2006) Zbl1094.54001MR2227022DOI10.1016/j.topol.2005.06.004
- Engelking, R., General Topology, Sigma Series in Pure Mathematics 6 Heldermann, Berlin (1989). (1989) Zbl0684.54001MR1039321
- Ginsburg, J., Woods, R. G., 10.1090/S0002-9939-1977-0461407-7, Proc. Am. Math. Soc. 64 (1977), 357-360. (1977) Zbl0398.54002MR0461407DOI10.1090/S0002-9939-1977-0461407-7
- Hodel, R., Cardinal functions I, Handbook of Set-Theoretic Topology North-Holland VII, Amsterdam K. Kunen et al. 1-61 North-Holland, Amsterdam (1984). (1984) Zbl0559.54003MR0776620
- Matveev, M., A survey on star covering properties, Topology Atlas (1998), http://at.yorku.ca/v/a/a/a/19.htm. (1998)
- Shakhmatov, D. B., No upper bound for cardinalities of Tychonoff C.C.C. spaces with a -diagonal exists, Commentat. Math. Univ. Carol. 25 (1984), 731-746. (1984) MR0782022
- Uspenskij, V. V., A large -discrete Frechet space having the Souslin property, Commentat. Math. Univ. Carol. 25 (1984), 257-260. (1984) MR0768812
- Wiscamb, M. R., 10.1090/S0002-9939-1969-0248744-1, Proc. Am. Math. Soc. 23 (1969), 608-612. (1969) Zbl0184.26304MR0248744DOI10.1090/S0002-9939-1969-0248744-1
- Xuan, W. F., Shi, W. X., 10.1017/S0004972714000318, Bull. Aust. Math. Soc. 90 (2014), 521-524. (2014) Zbl1305.54036MR3270766DOI10.1017/S0004972714000318
- Xuan, W. F., Shi, W. X., 10.1017/S0004972713001184, Bull. Aust. Math. Soc. 90 (2014), 141-143. (2014) MR3227139DOI10.1017/S0004972713001184
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.