No upper bound for cardinalities of Tychonoff C.C.C. spaces with a -diagonal exists (an answer to J. Ginsburg and R. G. Woods’ question)
Commentationes Mathematicae Universitatis Carolinae (1984)
- Volume: 025, Issue: 4, page 731-746
- ISSN: 0010-2628
Access Full Article
topHow to cite
topShakhmatov, Dmitriĭ B.. "No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta $-diagonal exists (an answer to J. Ginsburg and R. G. Woods’ question)." Commentationes Mathematicae Universitatis Carolinae 025.4 (1984): 731-746. <http://eudml.org/doc/17355>.
@article{Shakhmatov1984,
author = {Shakhmatov, Dmitriĭ B.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {collectionwise Hausdorff space with a -diagonal; countable chain condition; Tikhonov space with a -diagonal; zero- dimensional space with a -diagonal},
language = {eng},
number = {4},
pages = {731-746},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta $-diagonal exists (an answer to J. Ginsburg and R. G. Woods’ question)},
url = {http://eudml.org/doc/17355},
volume = {025},
year = {1984},
}
TY - JOUR
AU - Shakhmatov, Dmitriĭ B.
TI - No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta $-diagonal exists (an answer to J. Ginsburg and R. G. Woods’ question)
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1984
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 025
IS - 4
SP - 731
EP - 746
LA - eng
KW - collectionwise Hausdorff space with a -diagonal; countable chain condition; Tikhonov space with a -diagonal; zero- dimensional space with a -diagonal
UR - http://eudml.org/doc/17355
ER -
References
top- GINSBUBG J., WOODS R. G., A cardinal inequality for topological spaces involving closed discrete sets, - Proc. Amer. Math. Soc., 1977, t. 64, N 2, p. 357-360. (1977) MR0461407
- APХАНГЕЛЬСКИЙ A. B., Стройенийе и класификация топологицеских пространств и кардинальные инварианты, - Уcпехи Матем. Наук 33, 6 (1978), 29-84. (Arhangel'skii A. V. A structure of spaces, their classification and cardinal invariants - Soviet math. Surveys, 1978, v. 33, N 6, p. 29-84). (1978) MR0526012
- ENGELKING R., General topology, - Warszawa, PWN, 1977. (1977) Zbl0373.54002MR0500780
- ЦЕЙТЛИН M. Я., Об одной задаче А. В. Архангельского, B сборнике Топология и теория множеств, Удмуртский госыдарственный университет. Ижевск 1982, с. 8-11 (Zeitlin M. J. On a question of A. V. Arhangel'skii. In: Topology and Theory of sets, University of the Udmurt Republic. Ishevsk, USSR, 1982, p. 8-11). (1982) Zbl1171.03330
- ШAXMATOB Д. Б., О псевдокомпактныцч пространствах с точечно счотной базой, - Доклады AH CCCP, 1964 [в печати] (Shakhmatov D. B. On pseudocompact spaces with a point-countable base, to appear in Soviet Math. Dokl.). (1964)
- CEDER J. G., Some generalisations of metric spaces, - Pacific J. Math., 1961, t. 11, N 1, p. 105-125. (1961) MR0131860
- HAJNAL A., JUHÁSZ I., Discrete subspaces of topological spaces, - Indag. Math., 1967, v. 29, p. 343-356. (1967) MR0229195
- TERADA T., Dense subspaces of topological spaces, (to appear in Canadian Math. J.).- Zentralblatt für Mathematik, 1983, B. 507, abstract 54005. (1983) MR0738839
- USPENSKII V. V., A large -discrete Fréchet space having the Souslin property, - Comment. Math. Univ. Carolinae 25 (1984), 257-260. (1984) MR0768812
Citations in EuDML Documents
top- Vladimir Vladimirovich Tkachuk, Approximation of with countable subsets of and calibers of the space
- Wei-Feng Xuan, Wei-Xue Shi, Spaces with property
- Wei-Feng Xuan, Wei-Xue Shi, Cardinalities of DCCC normal spaces with a rank 2-diagonal
- Wei-Feng Xuan, An observation on spaces with a zeroset diagonal
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.