No upper bound for cardinalities of Tychonoff C.C.C. spaces with a G δ -diagonal exists (an answer to J. Ginsburg and R. G. Woods’ question)

Dmitriĭ B. Shakhmatov

Commentationes Mathematicae Universitatis Carolinae (1984)

  • Volume: 025, Issue: 4, page 731-746
  • ISSN: 0010-2628

How to cite

top

Shakhmatov, Dmitriĭ B.. "No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta $-diagonal exists (an answer to J. Ginsburg and R. G. Woods’ question)." Commentationes Mathematicae Universitatis Carolinae 025.4 (1984): 731-746. <http://eudml.org/doc/17355>.

@article{Shakhmatov1984,
author = {Shakhmatov, Dmitriĭ B.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {collectionwise Hausdorff space with a -diagonal; countable chain condition; Tikhonov space with a -diagonal; zero- dimensional space with a -diagonal},
language = {eng},
number = {4},
pages = {731-746},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta $-diagonal exists (an answer to J. Ginsburg and R. G. Woods’ question)},
url = {http://eudml.org/doc/17355},
volume = {025},
year = {1984},
}

TY - JOUR
AU - Shakhmatov, Dmitriĭ B.
TI - No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta $-diagonal exists (an answer to J. Ginsburg and R. G. Woods’ question)
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1984
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 025
IS - 4
SP - 731
EP - 746
LA - eng
KW - collectionwise Hausdorff space with a -diagonal; countable chain condition; Tikhonov space with a -diagonal; zero- dimensional space with a -diagonal
UR - http://eudml.org/doc/17355
ER -

References

top
  1. GINSBUBG J., WOODS R. G., A cardinal inequality for topological spaces involving closed discrete sets, - Proc. Amer. Math. Soc., 1977, t. 64, N 2, p. 357-360. (1977) MR0461407
  2. APХАНГЕЛЬСКИЙ A. B., Стройенийе и класификация топологицеских пространств и кардинальные инварианты, - Уcпехи Матем. Наук 33, 6 (1978), 29-84. (Arhangel'skii A. V. A structure of spaces, their classification and cardinal invariants - Soviet math. Surveys, 1978, v. 33, N 6, p. 29-84). (1978) MR0526012
  3. ENGELKING R., General topology, - Warszawa, PWN, 1977. (1977) Zbl0373.54002MR0500780
  4. ЦЕЙТЛИН M. Я., Об одной задаче А. В. Архангельского, B сборнике Топология и теория множеств, Удмуртский госыдарственный университет. Ижевск 1982, с. 8-11 (Zeitlin M. J. On a question of A. V. Arhangel'skii. In: Topology and Theory of sets, University of the Udmurt Republic. Ishevsk, USSR, 1982, p. 8-11). (1982) Zbl1171.03330
  5. ШAXMATOB Д. Б., О псевдокомпактныцч пространствах с точечно счотной базой, - Доклады AH CCCP, 1964 [в печати] (Shakhmatov D. B. On pseudocompact spaces with a point-countable base, to appear in Soviet Math. Dokl.). (1964) 
  6. CEDER J. G., Some generalisations of metric spaces, - Pacific J. Math., 1961, t. 11, N 1, p. 105-125. (1961) MR0131860
  7. HAJNAL A., JUHÁSZ I., Discrete subspaces of topological spaces, - Indag. Math., 1967, v. 29, p. 343-356. (1967) MR0229195
  8. TERADA T., Dense subspaces of topological spaces, (to appear in Canadian Math. J.).- Zentralblatt für Mathematik, 1983, B. 507, abstract 54005. (1983) MR0738839
  9. USPENSKII V. V., A large P σ -discrete Fréchet space having the Souslin property, - Comment. Math. Univ. Carolinae 25 (1984), 257-260. (1984) MR0768812

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.