A large F σ -discrete Fréchet space having the Souslin property

Vladimir Vladimirovich Uspenskij

Commentationes Mathematicae Universitatis Carolinae (1984)

  • Volume: 025, Issue: 2, page 257-260
  • ISSN: 0010-2628

How to cite

top

Uspenskij, Vladimir Vladimirovich. "A large $F_\sigma $-discrete Fréchet space having the Souslin property." Commentationes Mathematicae Universitatis Carolinae 025.2 (1984): 257-260. <http://eudml.org/doc/17314>.

@article{Uspenskij1984,
author = {Uspenskij, Vladimir Vladimirovich},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Souslin number; Fréchet space; countable tightness; countable pseudocharacter; -product; dense subspace; union of countably many closed discrete sets; diagonal},
language = {eng},
number = {2},
pages = {257-260},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A large $F_\sigma $-discrete Fréchet space having the Souslin property},
url = {http://eudml.org/doc/17314},
volume = {025},
year = {1984},
}

TY - JOUR
AU - Uspenskij, Vladimir Vladimirovich
TI - A large $F_\sigma $-discrete Fréchet space having the Souslin property
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1984
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 025
IS - 2
SP - 257
EP - 260
LA - eng
KW - Souslin number; Fréchet space; countable tightness; countable pseudocharacter; -product; dense subspace; union of countably many closed discrete sets; diagonal
UR - http://eudml.org/doc/17314
ER -

References

top
  1. JUHÁSZ I., Cardinal functions in topology - ten years later, Math. Centre Tracts 123, Amsterdam 1980. (1980) MR0576927
  2. APXAHГEЛЬCKИЙ A. B., Cтpoeнмe н клaccификaция тoпoлoгичecкиx пpocтpaнcтв н кapдинaльннe инвapиaнты, Уcпexм мaтeм. нayк 33 (1978), 6, 29-84. (1978) 
  3. AМИРДЖAHOВ Г. П., O вcюдy плoтныx пoдпpocтpaнcтвax cчeтнoгo пceвдoxapaктepa и дpyrнx oбoбщeнняx ceпapaбeльнocтм, Дoклaды AH CCCP 234 (1977), 993-996. (1977) 
  4. SIMON P., A note on cardinal invariants of square, Comment. Math. Univ. Carolinae 14 (1973), 205-213. (1973) Zbl0258.54003MR0339044
  5. GINSBURG J., WOODS R. G., A cardinal inequality for topological spaces involving closed discrete sets, Proc. Amer. Math. Soc. 64 (1977), 357-360. (1977) Zbl0398.54002MR0461407

Citations in EuDML Documents

top
  1. Dmitriĭ B. Shakhmatov, No upper bound for cardinalities of Tychonoff C.C.C. spaces with a G δ -diagonal exists (an answer to J. Ginsburg and R. G. Woods’ question)
  2. Vladimir Vladimirovich Tkachuk, Approximation of 𝐑 X with countable subsets of C p ( X ) and calibers of the space C p ( X )
  3. Wei-Feng Xuan, Wei-Xue Shi, Spaces with property ( D C ( ω 1 ) )
  4. Wei-Feng Xuan, Wei-Xue Shi, Cardinalities of DCCC normal spaces with a rank 2-diagonal
  5. Wei-Feng Xuan, An observation on spaces with a zeroset diagonal

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.