Steiner forms
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 4, page 527-536
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHora, Jan. "Steiner forms." Commentationes Mathematicae Universitatis Carolinae 57.4 (2016): 527-536. <http://eudml.org/doc/287542>.
@article{Hora2016,
abstract = {A trilinear alternating form on dimension $n$ can be defined based on a Steiner triple system of order $n$. We prove some basic properties of these forms and using the radical polynomial we show that for dimensions up to $15$ nonisomorphic Steiner triple systems provide nonequivalent forms over $GF(2)$. Finally, we prove that Steiner triple systems of order $n$ with different number of subsystems of order $(n-1)/2$ yield nonequivalent forms over $GF(2)$.},
author = {Hora, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {trilinear alternating form; Steiner triple system; radical polynomial},
language = {eng},
number = {4},
pages = {527-536},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Steiner forms},
url = {http://eudml.org/doc/287542},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Hora, Jan
TI - Steiner forms
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 4
SP - 527
EP - 536
AB - A trilinear alternating form on dimension $n$ can be defined based on a Steiner triple system of order $n$. We prove some basic properties of these forms and using the radical polynomial we show that for dimensions up to $15$ nonisomorphic Steiner triple systems provide nonequivalent forms over $GF(2)$. Finally, we prove that Steiner triple systems of order $n$ with different number of subsystems of order $(n-1)/2$ yield nonequivalent forms over $GF(2)$.
LA - eng
KW - trilinear alternating form; Steiner triple system; radical polynomial
UR - http://eudml.org/doc/287542
ER -
References
top- Cohen A.M., Helminck A.G., 10.1080/00927878808823558, Comm. Algebra 16 (1988), no. 1, 1–25. Zbl0646.15019MR0921939DOI10.1080/00927878808823558
- Gurevich G.B., Foundations of the Theory of Algebraic Invariants, P. Noordhoff Ltd., Groningen, 1964. Zbl0128.24601MR0183733
- Djokovic D., 10.1080/03081088308817501, Linear Multilinear Algebra 13 (1983), no. 3, 3–39. Zbl0515.15011MR0691457DOI10.1080/03081088308817501
- Noui L., 10.1016/S0764-4442(97)86976-5, C.R. Acad. Sci. Paris Sér. I Math. 324 (1997), 611–614. Zbl0872.15023MR1447029DOI10.1016/S0764-4442(97)86976-5
- Colbourn C.J., Rosa A., Triple Systems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl1030.05017MR1843379
- Hora J., 10.1080/03081080310001606517, Linear Multilinear Algebra 52 (2004), no. 2, 121–132. Zbl1049.15022MR2033133DOI10.1080/03081080310001606517
- Hora J., Pudlák P., Classification of -dimensional trilinear alternating forms over , Comm. Algebra 43 (2015), no. 8, 3459–3471. MR3354103
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.