Solvability of a class of phase field systems related to a sliding mode control problem
Applications of Mathematics (2016)
- Volume: 61, Issue: 6, page 623-650
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topColturato, Michele. "Solvability of a class of phase field systems related to a sliding mode control problem." Applications of Mathematics 61.6 (2016): 623-650. <http://eudml.org/doc/287546>.
@article{Colturato2016,
abstract = {We consider a phase-field system of Caginalp type perturbed by the presence of an additional maximal monotone nonlinearity. Such a system arises from a recent study of a sliding mode control problem. We prove the existence of strong solutions. Moreover, under further assumptions, we show the continuous dependence on the initial data and the uniqueness of the solution.},
author = {Colturato, Michele},
journal = {Applications of Mathematics},
keywords = {phase transition problem; phase field system; nonlinear parabolic boundary value problem; existence; continuous dependence; phase transition problem; phase field system; nonlinear parabolic boundary value problem; existence; continuous dependence},
language = {eng},
number = {6},
pages = {623-650},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solvability of a class of phase field systems related to a sliding mode control problem},
url = {http://eudml.org/doc/287546},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Colturato, Michele
TI - Solvability of a class of phase field systems related to a sliding mode control problem
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 6
SP - 623
EP - 650
AB - We consider a phase-field system of Caginalp type perturbed by the presence of an additional maximal monotone nonlinearity. Such a system arises from a recent study of a sliding mode control problem. We prove the existence of strong solutions. Moreover, under further assumptions, we show the continuous dependence on the initial data and the uniqueness of the solution.
LA - eng
KW - phase transition problem; phase field system; nonlinear parabolic boundary value problem; existence; continuous dependence; phase transition problem; phase field system; nonlinear parabolic boundary value problem; existence; continuous dependence
UR - http://eudml.org/doc/287546
ER -
References
top- Barbu, V., Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics Springer, New York (2010). (2010) Zbl1197.35002MR2582280
- Barbu, V., Colli, P., Gilardi, G., Marinoschi, G., Rocca, E., Sliding mode control for a nonlinear phase-field system, Preprint arXiv:1506.01665 [math.AP] (2015), 1-28. (2015) MR3448672
- Br{é}zis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies 5. Notas de Matem{á}tica (50) North-Holland Publishing, Amsterdam-London; American Elsevier Publishing, New York (1973). (1973) Zbl0252.47055MR0348562
- Brokate, M., Sprekels, J., 10.1007/978-1-4612-4048-8_5, Applied Mathematical Sciences 121 Springer, New York (1996). (1996) Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8_5
- Caginalp, G., 10.1007/BF00254827, Arch. Ration. Mech. Anal. 92 (1986), 205-245. (1986) Zbl0608.35080MR0816623DOI10.1007/BF00254827
- Colli, P., Gilardi, G., Marinoschi, G., 10.1016/j.jmaa.2015.09.011, J. Math. Anal. Appl. 434 (2016), 432-463. (2016) Zbl1327.49007MR3404567DOI10.1016/j.jmaa.2015.09.011
- Colli, P., Gilardi, G., Marinoschi, G., Rocca, E., 10.3934/mcrf.2016.6.95, Math. Control Relat. Fields 6 (2016), 95-112. (2016) Zbl1335.49008MR3448672DOI10.3934/mcrf.2016.6.95
- Colli, P., Marinoschi, G., Rocca, E., 10.1051/cocv/2015014, ESAIM, Control Optim. Calc. Var. 22 (2016), 473-499. (2016) Zbl1338.49007MR3491779DOI10.1051/cocv/2015014
- Damlamian, A., 10.1080/03605307708820053, Commun. Partial Differ. Equations 2 (1977), 1017-1044. (1977) Zbl0399.35054MR0487015DOI10.1080/03605307708820053
- DiBenedetto, E., 10.1512/iumj.1983.32.32008, Indiana Univ. Math. J. 32 (1983), 83-118. (1983) Zbl0526.35042MR0684758DOI10.1512/iumj.1983.32.32008
- Duvaut, G., Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degré), C. R. Acad. Sci., Paris, Sér. A French 276 (1973), 1461-1463. (1973) Zbl0258.35037MR0328346
- Elliott, C. M., Zheng, S., Global existence and stability of solutions to the phase field equations, Free Boundary Value Problems Proc. Conf. Oberwolfach, 1989, Internat. Ser. Numer. Math. 95 Birkhäuser, Basel (1990), 46-58. (1990) Zbl0733.35062MR1111021
- Friedman, A., 10.1090/S0002-9947-1968-0227625-7, Trans. Am. Math. Soc. 133 (1968), 51-87. (1968) Zbl0162.41903MR0227625DOI10.1090/S0002-9947-1968-0227625-7
- Grasselli, M., Petzeltová, H., Schimperna, G., 10.4171/ZAA/1277, Z. Anal. Anwend. 25 (2006), 51-72. (2006) Zbl1128.35021MR2216881DOI10.4171/ZAA/1277
- Hoffmann, K.-H., Jiang, L. S., 10.1080/01630569208816458, Numer. Funct. Anal. Optimization 13 (1992), 11-27. (1992) Zbl0724.49003MR1163315DOI10.1080/01630569208816458
- Hoffmann, K.-H., Kenmochi, N., Kubo, M., Yamazaki, N., Optimal control problems for models of phase-field type with hysteresis of play operator, Adv. Math. Sci. Appl. 17 (2007), 305-336. (2007) Zbl1287.49005MR2337381
- Hui, K. M., 10.1007/s00208-007-0119-x, Math. Ann. 339 (2007), 395-443. (2007) Zbl1145.35075MR2324725DOI10.1007/s00208-007-0119-x
- Kenmochi, N., Niezgódka, M., 10.1016/0362-546X(94)90235-6, Nonlinear Anal., Theory Methods Appl. 22 (1994), 1163-1180. (1994) MR1279139DOI10.1016/0362-546X(94)90235-6
- Lauren{ç}ot, Ph., 10.1017/S0308210500030663, Proc. R. Soc. Edinb., Sect. A 126 (1996), 167-185. (1996) Zbl0851.35055MR1378839DOI10.1017/S0308210500030663
- Showalter, R. E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs 49 Amer. Math. Soc., Providence (1997). (1997) Zbl0870.35004MR1422252
- Simon, J., Compact sets in the space , Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. (1987) MR0916688
- V{á}zquez, J. L., The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs The Clarendon Press, Oxford University Press, Oxford (2007). (2007) Zbl1107.35003MR2286292
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.