Solvability of a class of phase field systems related to a sliding mode control problem

Michele Colturato

Applications of Mathematics (2016)

  • Volume: 61, Issue: 6, page 623-650
  • ISSN: 0862-7940

Abstract

top
We consider a phase-field system of Caginalp type perturbed by the presence of an additional maximal monotone nonlinearity. Such a system arises from a recent study of a sliding mode control problem. We prove the existence of strong solutions. Moreover, under further assumptions, we show the continuous dependence on the initial data and the uniqueness of the solution.

How to cite

top

Colturato, Michele. "Solvability of a class of phase field systems related to a sliding mode control problem." Applications of Mathematics 61.6 (2016): 623-650. <http://eudml.org/doc/287546>.

@article{Colturato2016,
abstract = {We consider a phase-field system of Caginalp type perturbed by the presence of an additional maximal monotone nonlinearity. Such a system arises from a recent study of a sliding mode control problem. We prove the existence of strong solutions. Moreover, under further assumptions, we show the continuous dependence on the initial data and the uniqueness of the solution.},
author = {Colturato, Michele},
journal = {Applications of Mathematics},
keywords = {phase transition problem; phase field system; nonlinear parabolic boundary value problem; existence; continuous dependence; phase transition problem; phase field system; nonlinear parabolic boundary value problem; existence; continuous dependence},
language = {eng},
number = {6},
pages = {623-650},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solvability of a class of phase field systems related to a sliding mode control problem},
url = {http://eudml.org/doc/287546},
volume = {61},
year = {2016},
}

TY - JOUR
AU - Colturato, Michele
TI - Solvability of a class of phase field systems related to a sliding mode control problem
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 6
SP - 623
EP - 650
AB - We consider a phase-field system of Caginalp type perturbed by the presence of an additional maximal monotone nonlinearity. Such a system arises from a recent study of a sliding mode control problem. We prove the existence of strong solutions. Moreover, under further assumptions, we show the continuous dependence on the initial data and the uniqueness of the solution.
LA - eng
KW - phase transition problem; phase field system; nonlinear parabolic boundary value problem; existence; continuous dependence; phase transition problem; phase field system; nonlinear parabolic boundary value problem; existence; continuous dependence
UR - http://eudml.org/doc/287546
ER -

References

top
  1. Barbu, V., Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics Springer, New York (2010). (2010) Zbl1197.35002MR2582280
  2. Barbu, V., Colli, P., Gilardi, G., Marinoschi, G., Rocca, E., Sliding mode control for a nonlinear phase-field system, Preprint arXiv:1506.01665 [math.AP] (2015), 1-28. (2015) MR3448672
  3. Br{é}zis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies 5. Notas de Matem{á}tica (50) North-Holland Publishing, Amsterdam-London; American Elsevier Publishing, New York (1973). (1973) Zbl0252.47055MR0348562
  4. Brokate, M., Sprekels, J., 10.1007/978-1-4612-4048-8_5, Applied Mathematical Sciences 121 Springer, New York (1996). (1996) Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8_5
  5. Caginalp, G., 10.1007/BF00254827, Arch. Ration. Mech. Anal. 92 (1986), 205-245. (1986) Zbl0608.35080MR0816623DOI10.1007/BF00254827
  6. Colli, P., Gilardi, G., Marinoschi, G., 10.1016/j.jmaa.2015.09.011, J. Math. Anal. Appl. 434 (2016), 432-463. (2016) Zbl1327.49007MR3404567DOI10.1016/j.jmaa.2015.09.011
  7. Colli, P., Gilardi, G., Marinoschi, G., Rocca, E., 10.3934/mcrf.2016.6.95, Math. Control Relat. Fields 6 (2016), 95-112. (2016) Zbl1335.49008MR3448672DOI10.3934/mcrf.2016.6.95
  8. Colli, P., Marinoschi, G., Rocca, E., 10.1051/cocv/2015014, ESAIM, Control Optim. Calc. Var. 22 (2016), 473-499. (2016) Zbl1338.49007MR3491779DOI10.1051/cocv/2015014
  9. Damlamian, A., 10.1080/03605307708820053, Commun. Partial Differ. Equations 2 (1977), 1017-1044. (1977) Zbl0399.35054MR0487015DOI10.1080/03605307708820053
  10. DiBenedetto, E., 10.1512/iumj.1983.32.32008, Indiana Univ. Math. J. 32 (1983), 83-118. (1983) Zbl0526.35042MR0684758DOI10.1512/iumj.1983.32.32008
  11. Duvaut, G., Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degré), C. R. Acad. Sci., Paris, Sér. A French 276 (1973), 1461-1463. (1973) Zbl0258.35037MR0328346
  12. Elliott, C. M., Zheng, S., Global existence and stability of solutions to the phase field equations, Free Boundary Value Problems Proc. Conf. Oberwolfach, 1989, Internat. Ser. Numer. Math. 95 Birkhäuser, Basel (1990), 46-58. (1990) Zbl0733.35062MR1111021
  13. Friedman, A., 10.1090/S0002-9947-1968-0227625-7, Trans. Am. Math. Soc. 133 (1968), 51-87. (1968) Zbl0162.41903MR0227625DOI10.1090/S0002-9947-1968-0227625-7
  14. Grasselli, M., Petzeltová, H., Schimperna, G., 10.4171/ZAA/1277, Z. Anal. Anwend. 25 (2006), 51-72. (2006) Zbl1128.35021MR2216881DOI10.4171/ZAA/1277
  15. Hoffmann, K.-H., Jiang, L. S., 10.1080/01630569208816458, Numer. Funct. Anal. Optimization 13 (1992), 11-27. (1992) Zbl0724.49003MR1163315DOI10.1080/01630569208816458
  16. Hoffmann, K.-H., Kenmochi, N., Kubo, M., Yamazaki, N., Optimal control problems for models of phase-field type with hysteresis of play operator, Adv. Math. Sci. Appl. 17 (2007), 305-336. (2007) Zbl1287.49005MR2337381
  17. Hui, K. M., 10.1007/s00208-007-0119-x, Math. Ann. 339 (2007), 395-443. (2007) Zbl1145.35075MR2324725DOI10.1007/s00208-007-0119-x
  18. Kenmochi, N., Niezgódka, M., 10.1016/0362-546X(94)90235-6, Nonlinear Anal., Theory Methods Appl. 22 (1994), 1163-1180. (1994) MR1279139DOI10.1016/0362-546X(94)90235-6
  19. Lauren{ç}ot, Ph., 10.1017/S0308210500030663, Proc. R. Soc. Edinb., Sect. A 126 (1996), 167-185. (1996) Zbl0851.35055MR1378839DOI10.1017/S0308210500030663
  20. Showalter, R. E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs 49 Amer. Math. Soc., Providence (1997). (1997) Zbl0870.35004MR1422252
  21. Simon, J., Compact sets in the space L p ( 0 , T ; B ) , Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. (1987) MR0916688
  22. V{á}zquez, J. L., The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs The Clarendon Press, Oxford University Press, Oxford (2007). (2007) Zbl1107.35003MR2286292

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.