Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 4, page 1079-1101
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSzarvas, Kristóf, and Weisz, Ferenc. "Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces." Czechoslovak Mathematical Journal 66.4 (2016): 1079-1101. <http://eudml.org/doc/287548>.
@article{Szarvas2016,
abstract = {The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces $L_\{p\}(\mathbb \{R\}^d)$ (in the case $p >1$), but (in the case when $1/p(\cdot )$ is log-Hölder continuous and $p_\{-\} = \inf \lbrace p(x) \colon x \in \mathbb \{R\}^d \rbrace > 1$) on the variable Lebesgue spaces $L_\{p(\cdot )\}(\mathbb \{R\}^d)$, too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type $(1,1)$. In the present note we generalize Besicovitch’s covering theorem for the so-called $\gamma $-rectangles. We introduce a general maximal operator $M_\{s\}^\{\gamma ,\delta \}$ and with the help of generalized $\Phi $-functions, the strong- and weak-type inequalities will be proved for this maximal operator. Namely, if the exponent function $1/p(\cdot )$ is log-Hölder continuous and $p_\{-\} > s$, where $1 \le s \le \infty $ is arbitrary (or $p_\{-\} \ge s$), then the maximal operator $M_\{s\}^\{\gamma ,\delta \}$ is bounded on the space $L_\{p(\cdot )\}(\mathbb \{R\}^d)$ (or the maximal operator is of weak-type $(p(\cdot ),p(\cdot ))$).},
author = {Szarvas, Kristóf, Weisz, Ferenc},
journal = {Czechoslovak Mathematical Journal},
keywords = {variable Lebesgue space; maximal operator; $\gamma $-rectangle; Besicovitch’s covering theorem; weak-type inequality; strong-type inequality; variable Lebesgue space; maximal operator; $\gamma $-rectangle; Besicovitch's covering theorem; weak-type inequality; strong-type inequality},
language = {eng},
number = {4},
pages = {1079-1101},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces},
url = {http://eudml.org/doc/287548},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Szarvas, Kristóf
AU - Weisz, Ferenc
TI - Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 1079
EP - 1101
AB - The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces $L_{p}(\mathbb {R}^d)$ (in the case $p >1$), but (in the case when $1/p(\cdot )$ is log-Hölder continuous and $p_{-} = \inf \lbrace p(x) \colon x \in \mathbb {R}^d \rbrace > 1$) on the variable Lebesgue spaces $L_{p(\cdot )}(\mathbb {R}^d)$, too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type $(1,1)$. In the present note we generalize Besicovitch’s covering theorem for the so-called $\gamma $-rectangles. We introduce a general maximal operator $M_{s}^{\gamma ,\delta }$ and with the help of generalized $\Phi $-functions, the strong- and weak-type inequalities will be proved for this maximal operator. Namely, if the exponent function $1/p(\cdot )$ is log-Hölder continuous and $p_{-} > s$, where $1 \le s \le \infty $ is arbitrary (or $p_{-} \ge s$), then the maximal operator $M_{s}^{\gamma ,\delta }$ is bounded on the space $L_{p(\cdot )}(\mathbb {R}^d)$ (or the maximal operator is of weak-type $(p(\cdot ),p(\cdot ))$).
LA - eng
KW - variable Lebesgue space; maximal operator; $\gamma $-rectangle; Besicovitch’s covering theorem; weak-type inequality; strong-type inequality; variable Lebesgue space; maximal operator; $\gamma $-rectangle; Besicovitch's covering theorem; weak-type inequality; strong-type inequality
UR - http://eudml.org/doc/287548
ER -
References
top- Almeida, A., Drihem, D., 10.1016/j.jmaa.2012.04.043, J. Math. Anal. Appl. 394 (2012), 781-795. (2012) Zbl1250.42077MR2927498DOI10.1016/j.jmaa.2012.04.043
- Besicovitch, A. S., 10.1017/S0305004100022453, Proc. Camb. Philos. Soc. 41 (1945), 103-110. (1945) Zbl0063.00352MR0012325DOI10.1017/S0305004100022453
- Besicovitch, A. S., 10.1017/S0305004100022660, Proc. Camb. Philos. Soc. 42 (1946), 1-10. (1946) Zbl0063.00353MR0014414DOI10.1017/S0305004100022660
- Cruz-Uribe, D., Diening, L., Fiorenza, A., A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Boll. Unione Mat. Ital. (9) 2 (2009), 151-173. (2009) Zbl1207.42011MR2493649
- Cruz-Uribe, D., Diening, L., Hästö, P., 10.2478/s13540-011-0023-7, Fract. Calc. Appl. Anal. 14 (2011), 361-374. (2011) Zbl1273.42018MR2837636DOI10.2478/s13540-011-0023-7
- Cruz-Uribe, D. V., Fiorenza, A., Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis Birkhäuser/Springer, New York (2013). (2013) Zbl1268.46002MR3026953
- Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. (2006) Zbl1100.42012MR2210118
- Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J., The maximal function on variable spaces, Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. (2003) Zbl1037.42023MR1976842
- Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J., 10.1016/j.jmaa.2012.04.044, J. Math. Anal. Appl. 394 (2012), 744-760. (2012) Zbl1298.42021MR2927495DOI10.1016/j.jmaa.2012.04.044
- Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T., Maximal functions in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math. 34 (2009), 503-522. (2009) Zbl1180.42010MR2553809
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
- Gát, G., 10.1016/j.jat.2006.08.006, J. Approximation Theory 149 (2007), 74-102. (2007) Zbl1135.42007MR2371615DOI10.1016/j.jat.2006.08.006
- Kopaliani, T., 10.1016/j.jfa.2009.06.009, J. Funct. Anal. 257 (2009), 3541-3551. (2009) Zbl1202.46024MR2572260DOI10.1016/j.jfa.2009.06.009
- Kováčik, O., k, J. Rákosní, On spaces and , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
- Marcinkiewicz, J., Zygmund, A., 10.4064/fm-32-1-122-132, Fundam. Math. 32 (1939), 122-132. (1939) Zbl0022.01804DOI10.4064/fm-32-1-122-132
- Mattila, P., Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics 44 Cambridge University Press, Cambridge (1999). (1999) Zbl0911.28005MR1333890
- Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43 Princeton University Press, Princeton (1993). (1993) Zbl0821.42001MR1232192
- Stein, E. M., Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series Princeton University Press, Princeton (1971). (1971) Zbl0232.42007MR0304972
- Szarvas, K., Weisz, F., Convergence of integral operators and applications, Period. Math. Hung. 73 (2016), 1-27. (2016)
- Weisz, F., Summability of Multi-Dimensional Fourier Series and Hardy Spaces, Mathematics and Its Applications 541 Springer, Dordrecht (2002). (2002) Zbl1306.42003MR2009144
- Weisz, F., 10.1016/j.jmaa.2008.02.035, J. Math. Anal. Appl. 344 (2008), 42-54. (2008) Zbl1254.42012MR2416292DOI10.1016/j.jmaa.2008.02.035
- Weisz, F., Summability of multi-dimensional trigonometric Fourier series, Surv. Approx. Theory (electronic only) 7 (2012), 1-179. (2012) Zbl1285.42010MR2943169
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.