Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces

Kristóf Szarvas; Ferenc Weisz

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 4, page 1079-1101
  • ISSN: 0011-4642

Abstract

top
The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces L p ( d ) (in the case p > 1 ), but (in the case when 1 / p ( · ) is log-Hölder continuous and p - = inf { p ( x ) : x d } > 1 ) on the variable Lebesgue spaces L p ( · ) ( d ) , too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type ( 1 , 1 ) . In the present note we generalize Besicovitch’s covering theorem for the so-called γ -rectangles. We introduce a general maximal operator M s γ , δ and with the help of generalized Φ -functions, the strong- and weak-type inequalities will be proved for this maximal operator. Namely, if the exponent function 1 / p ( · ) is log-Hölder continuous and p - > s , where 1 s is arbitrary (or p - s ), then the maximal operator M s γ , δ is bounded on the space L p ( · ) ( d ) (or the maximal operator is of weak-type ( p ( · ) , p ( · ) ) ).

How to cite

top

Szarvas, Kristóf, and Weisz, Ferenc. "Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces." Czechoslovak Mathematical Journal 66.4 (2016): 1079-1101. <http://eudml.org/doc/287548>.

@article{Szarvas2016,
abstract = {The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces $L_\{p\}(\mathbb \{R\}^d)$ (in the case $p >1$), but (in the case when $1/p(\cdot )$ is log-Hölder continuous and $p_\{-\} = \inf \lbrace p(x) \colon x \in \mathbb \{R\}^d \rbrace > 1$) on the variable Lebesgue spaces $L_\{p(\cdot )\}(\mathbb \{R\}^d)$, too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type $(1,1)$. In the present note we generalize Besicovitch’s covering theorem for the so-called $\gamma $-rectangles. We introduce a general maximal operator $M_\{s\}^\{\gamma ,\delta \}$ and with the help of generalized $\Phi $-functions, the strong- and weak-type inequalities will be proved for this maximal operator. Namely, if the exponent function $1/p(\cdot )$ is log-Hölder continuous and $p_\{-\} > s$, where $1 \le s \le \infty $ is arbitrary (or $p_\{-\} \ge s$), then the maximal operator $M_\{s\}^\{\gamma ,\delta \}$ is bounded on the space $L_\{p(\cdot )\}(\mathbb \{R\}^d)$ (or the maximal operator is of weak-type $(p(\cdot ),p(\cdot ))$).},
author = {Szarvas, Kristóf, Weisz, Ferenc},
journal = {Czechoslovak Mathematical Journal},
keywords = {variable Lebesgue space; maximal operator; $\gamma $-rectangle; Besicovitch’s covering theorem; weak-type inequality; strong-type inequality; variable Lebesgue space; maximal operator; $\gamma $-rectangle; Besicovitch's covering theorem; weak-type inequality; strong-type inequality},
language = {eng},
number = {4},
pages = {1079-1101},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces},
url = {http://eudml.org/doc/287548},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Szarvas, Kristóf
AU - Weisz, Ferenc
TI - Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 1079
EP - 1101
AB - The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces $L_{p}(\mathbb {R}^d)$ (in the case $p >1$), but (in the case when $1/p(\cdot )$ is log-Hölder continuous and $p_{-} = \inf \lbrace p(x) \colon x \in \mathbb {R}^d \rbrace > 1$) on the variable Lebesgue spaces $L_{p(\cdot )}(\mathbb {R}^d)$, too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type $(1,1)$. In the present note we generalize Besicovitch’s covering theorem for the so-called $\gamma $-rectangles. We introduce a general maximal operator $M_{s}^{\gamma ,\delta }$ and with the help of generalized $\Phi $-functions, the strong- and weak-type inequalities will be proved for this maximal operator. Namely, if the exponent function $1/p(\cdot )$ is log-Hölder continuous and $p_{-} > s$, where $1 \le s \le \infty $ is arbitrary (or $p_{-} \ge s$), then the maximal operator $M_{s}^{\gamma ,\delta }$ is bounded on the space $L_{p(\cdot )}(\mathbb {R}^d)$ (or the maximal operator is of weak-type $(p(\cdot ),p(\cdot ))$).
LA - eng
KW - variable Lebesgue space; maximal operator; $\gamma $-rectangle; Besicovitch’s covering theorem; weak-type inequality; strong-type inequality; variable Lebesgue space; maximal operator; $\gamma $-rectangle; Besicovitch's covering theorem; weak-type inequality; strong-type inequality
UR - http://eudml.org/doc/287548
ER -

References

top
  1. Almeida, A., Drihem, D., 10.1016/j.jmaa.2012.04.043, J. Math. Anal. Appl. 394 (2012), 781-795. (2012) Zbl1250.42077MR2927498DOI10.1016/j.jmaa.2012.04.043
  2. Besicovitch, A. S., 10.1017/S0305004100022453, Proc. Camb. Philos. Soc. 41 (1945), 103-110. (1945) Zbl0063.00352MR0012325DOI10.1017/S0305004100022453
  3. Besicovitch, A. S., 10.1017/S0305004100022660, Proc. Camb. Philos. Soc. 42 (1946), 1-10. (1946) Zbl0063.00353MR0014414DOI10.1017/S0305004100022660
  4. Cruz-Uribe, D., Diening, L., Fiorenza, A., A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Boll. Unione Mat. Ital. (9) 2 (2009), 151-173. (2009) Zbl1207.42011MR2493649
  5. Cruz-Uribe, D., Diening, L., Hästö, P., 10.2478/s13540-011-0023-7, Fract. Calc. Appl. Anal. 14 (2011), 361-374. (2011) Zbl1273.42018MR2837636DOI10.2478/s13540-011-0023-7
  6. Cruz-Uribe, D. V., Fiorenza, A., Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis Birkhäuser/Springer, New York (2013). (2013) Zbl1268.46002MR3026953
  7. Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable L p spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. (2006) Zbl1100.42012MR2210118
  8. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J., The maximal function on variable L p spaces, Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. (2003) Zbl1037.42023MR1976842
  9. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J., 10.1016/j.jmaa.2012.04.044, J. Math. Anal. Appl. 394 (2012), 744-760. (2012) Zbl1298.42021MR2927495DOI10.1016/j.jmaa.2012.04.044
  10. Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T., Maximal functions in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math. 34 (2009), 503-522. (2009) Zbl1180.42010MR2553809
  11. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
  12. Gát, G., 10.1016/j.jat.2006.08.006, J. Approximation Theory 149 (2007), 74-102. (2007) Zbl1135.42007MR2371615DOI10.1016/j.jat.2006.08.006
  13. Kopaliani, T., 10.1016/j.jfa.2009.06.009, J. Funct. Anal. 257 (2009), 3541-3551. (2009) Zbl1202.46024MR2572260DOI10.1016/j.jfa.2009.06.009
  14. Kováčik, O., k, J. Rákosní, On spaces L p ( x ) and W k , p ( x ) , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
  15. Marcinkiewicz, J., Zygmund, A., 10.4064/fm-32-1-122-132, Fundam. Math. 32 (1939), 122-132. (1939) Zbl0022.01804DOI10.4064/fm-32-1-122-132
  16. Mattila, P., Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics 44 Cambridge University Press, Cambridge (1999). (1999) Zbl0911.28005MR1333890
  17. Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43 Princeton University Press, Princeton (1993). (1993) Zbl0821.42001MR1232192
  18. Stein, E. M., Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series Princeton University Press, Princeton (1971). (1971) Zbl0232.42007MR0304972
  19. Szarvas, K., Weisz, F., Convergence of integral operators and applications, Period. Math. Hung. 73 (2016), 1-27. (2016) 
  20. Weisz, F., Summability of Multi-Dimensional Fourier Series and Hardy Spaces, Mathematics and Its Applications 541 Springer, Dordrecht (2002). (2002) Zbl1306.42003MR2009144
  21. Weisz, F., 10.1016/j.jmaa.2008.02.035, J. Math. Anal. Appl. 344 (2008), 42-54. (2008) Zbl1254.42012MR2416292DOI10.1016/j.jmaa.2008.02.035
  22. Weisz, F., Summability of multi-dimensional trigonometric Fourier series, Surv. Approx. Theory (electronic only) 7 (2012), 1-179. (2012) Zbl1285.42010MR2943169

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.