# Abstract Weyl-type theorems

Mathematica Bohemica (2016)

- Volume: 141, Issue: 4, page 495-508
- ISSN: 0862-7959

## Access Full Article

top## Abstract

top## How to cite

topBerkani, Mohammed. "Abstract Weyl-type theorems." Mathematica Bohemica 141.4 (2016): 495-508. <http://eudml.org/doc/287574>.

@article{Berkani2016,

abstract = {In this paper, we give a new approach to the study of Weyl-type theorems. Precisely, we introduce the concepts of spectral valued and spectral partitioning functions. Using two natural order relations on the set of spectral valued functions, we reduce the question of relationship between Weyl-type theorems to the study of the set difference between the parts of the spectrum that are involved. This study solves completely the question of relationship between two spectral valued functions, comparable for one or the other order relation. Then several known results about Weyl-type theorems become corollaries of the results obtained.},

author = {Berkani, Mohammed},

journal = {Mathematica Bohemica},

keywords = {spectral valued function; partitioning; spectrum; Weyl-type theorem},

language = {eng},

number = {4},

pages = {495-508},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Abstract Weyl-type theorems},

url = {http://eudml.org/doc/287574},

volume = {141},

year = {2016},

}

TY - JOUR

AU - Berkani, Mohammed

TI - Abstract Weyl-type theorems

JO - Mathematica Bohemica

PY - 2016

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 141

IS - 4

SP - 495

EP - 508

AB - In this paper, we give a new approach to the study of Weyl-type theorems. Precisely, we introduce the concepts of spectral valued and spectral partitioning functions. Using two natural order relations on the set of spectral valued functions, we reduce the question of relationship between Weyl-type theorems to the study of the set difference between the parts of the spectrum that are involved. This study solves completely the question of relationship between two spectral valued functions, comparable for one or the other order relation. Then several known results about Weyl-type theorems become corollaries of the results obtained.

LA - eng

KW - spectral valued function; partitioning; spectrum; Weyl-type theorem

UR - http://eudml.org/doc/287574

ER -

## References

top- Aiena, P., Peña, P., 10.1016/j.jmaa.2005.11.027, J. Math. Anal. Appl. 324 (2006), 566-579. (2006) Zbl1101.47001MR2262492DOI10.1016/j.jmaa.2005.11.027
- Amouch, M., Zguitti, H., 10.1017/S0017089505002971, Glasg. Math. J. 48 (2006), 179-185. (2006) Zbl1097.47012MR2224938DOI10.1017/S0017089505002971
- Barnes, B. A., 10.1007/BF01236471, Integral Equations Oper. Theory 34 (1999), 187-196. (1999) Zbl0948.47002MR1694707DOI10.1007/BF01236471
- Berkani, M., 10.1007/BF01236475, Integral Equations Oper. Theory 34 (1999), 244-249. (1999) Zbl0939.47010MR1694711DOI10.1007/BF01236475
- Berkani, M., 10.1016/S0022-247X(02)00179-8, J. Math. Anal. Appl. 272 (2002), 596-603. (2002) Zbl1043.47004MR1930862DOI10.1016/S0022-247X(02)00179-8
- Berkani, M., 10.1090/S0002-9939-01-06291-8, Proc. Am. Math. Soc. 130 (2002), 1717-1723. (2002) Zbl0996.47015MR1887019DOI10.1090/S0002-9939-01-06291-8
- Berkani, M., 10.1007/s10114-005-0720-4, Acta Math. Sin., Engl. Ser. 23 (2007), 103-110. (2007) Zbl1116.47015MR2275483DOI10.1007/s10114-005-0720-4
- Berkani, M., Koliha, J. J., Weyl type theorems for bounded linear operators, Acta Sci. Math. 69 (2003), 359-376. (2003) Zbl1050.47014MR1991673
- Berkani, M., Sarih, M., 10.1017/S0017089501030075, Glasg. Math. J. 43 (2001), 457-465. (2001) Zbl0995.47008MR1878588DOI10.1017/S0017089501030075
- Berkani, M., Zariouh, H., Extended Weyl type theorems, Math. Bohem. 134 (2009), 369-378. (2009) Zbl1211.47011MR2597232
- Berkani, M., Zariouh, H., New extended Weyl type theorems, Mat. Vesn. 62 (2010), 145-154. (2010) Zbl1258.47020MR2639143
- Cao, X. H., 10.1007/s10114-005-0870-4, Acta Math. Sin., Engl. Ser. 23 (2007), 951-960. (2007) Zbl1153.47009MR2307839DOI10.1007/s10114-005-0870-4
- Curto, R. E., Han, Y. M., 10.1016/j.jmaa.2007.03.060, J. Math. Anal. Appl. 336 (2007), 1424-1442. (2007) Zbl1131.47003MR2353025DOI10.1016/j.jmaa.2007.03.060
- Djordjević, D. S., Operators obeying $a$-Weyl’s theorem, Publ. Math. 55 (1999), 283-298. (1999) Zbl0938.47008MR1721837
- Djordjević, S. V., Han, Y. M., 10.1017/S0017089500030147, Glasg. Math. J. 42 (2000), 479-486. (2000) Zbl0979.47004MR1793814DOI10.1017/S0017089500030147
- Duggal, B. P., 10.3318/PRIA.2008.108.2.149, Math. Proc. R. Ir. Acad. 108A (2008), 149-163. (2008) Zbl1180.47006MR2475808DOI10.3318/PRIA.2008.108.2.149
- Heuser, H. G., Functional Analysis, John Wiley & Sons Chichester (1982). (1982) Zbl0465.47001MR0640429
- Rakočević, V., Operators obeying $a$-Weyl’s theorem, Rev. Roum. Math. Pures Appl. 34 (1989), 915-919. (1989) MR1030982
- Weyl, H., 10.1007/BF03019655, Rend. Circ. Mat. Palermo 27 German (1909), 373-392, 402. (1909) DOI10.1007/BF03019655

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.