Extended Weyl type theorems

M. Berkani; H. Zariouh

Mathematica Bohemica (2009)

  • Volume: 134, Issue: 4, page 369-378
  • ISSN: 0862-7959

Abstract

top
An operator T acting on a Banach space X possesses property ( gw ) if σ a ( T ) σ SBF + - ( T ) = E ( T ) , where σ a ( T ) is the approximate point spectrum of T , σ SBF + - ( T ) is the essential semi-B-Fredholm spectrum of T and E ( T ) is the set of all isolated eigenvalues of T . In this paper we introduce and study two new properties ( b ) and ( gb ) in connection with Weyl type theorems, which are analogous respectively to Browder’s theorem and generalized Browder’s theorem. Among other, we prove that if T is a bounded linear operator acting on a Banach space X , then property ( gw ) holds for T if and only if property ( gb ) holds for T and E ( T ) = Π ( T ) , where Π ( T ) is the set of all poles of the resolvent of T .

How to cite

top

Berkani, M., and Zariouh, H.. "Extended Weyl type theorems." Mathematica Bohemica 134.4 (2009): 369-378. <http://eudml.org/doc/38099>.

@article{Berkani2009,
abstract = {An operator $T$ acting on a Banach space $X$ possesses property $(\{\rm gw\})$ if $\sigma _a(T)\setminus \sigma _\{\{\rm SBF\}_+^-\}(T)= E(T), $ where $\sigma _a(T)$ is the approximate point spectrum of $T$, $\sigma _\{\{\rm SBF\} _+^-\}(T)$ is the essential semi-B-Fredholm spectrum of $T$ and $E(T)$ is the set of all isolated eigenvalues of $T.$ In this paper we introduce and study two new properties $(\{\rm b\})$ and $(\{\rm gb\})$ in connection with Weyl type theorems, which are analogous respectively to Browder’s theorem and generalized Browder’s theorem. Among other, we prove that if $T$ is a bounded linear operator acting on a Banach space $X$, then property $(\{\rm gw\})$ holds for $T$ if and only if property $(\{\rm gb\})$ holds for $T$ and $E(T)=\Pi (T),$ where $\Pi (T)$ is the set of all poles of the resolvent of $T.$},
author = {Berkani, M., Zariouh, H.},
journal = {Mathematica Bohemica},
keywords = {B-Fredholm operator; Browder’s theorem; generalized Browder’s theorem; property $(\{\rm b\})$; property $(\{\rm gb\})$; B-Fredholm operator; Browder's theorem; generalized Browder's theorem; property (b); property (gb)},
language = {eng},
number = {4},
pages = {369-378},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extended Weyl type theorems},
url = {http://eudml.org/doc/38099},
volume = {134},
year = {2009},
}

TY - JOUR
AU - Berkani, M.
AU - Zariouh, H.
TI - Extended Weyl type theorems
JO - Mathematica Bohemica
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 134
IS - 4
SP - 369
EP - 378
AB - An operator $T$ acting on a Banach space $X$ possesses property $({\rm gw})$ if $\sigma _a(T)\setminus \sigma _{{\rm SBF}_+^-}(T)= E(T), $ where $\sigma _a(T)$ is the approximate point spectrum of $T$, $\sigma _{{\rm SBF} _+^-}(T)$ is the essential semi-B-Fredholm spectrum of $T$ and $E(T)$ is the set of all isolated eigenvalues of $T.$ In this paper we introduce and study two new properties $({\rm b})$ and $({\rm gb})$ in connection with Weyl type theorems, which are analogous respectively to Browder’s theorem and generalized Browder’s theorem. Among other, we prove that if $T$ is a bounded linear operator acting on a Banach space $X$, then property $({\rm gw})$ holds for $T$ if and only if property $({\rm gb})$ holds for $T$ and $E(T)=\Pi (T),$ where $\Pi (T)$ is the set of all poles of the resolvent of $T.$
LA - eng
KW - B-Fredholm operator; Browder’s theorem; generalized Browder’s theorem; property $({\rm b})$; property $({\rm gb})$; B-Fredholm operator; Browder's theorem; generalized Browder's theorem; property (b); property (gb)
UR - http://eudml.org/doc/38099
ER -

References

top
  1. Amouch, M., Berkani, M., 10.1007/s00009-008-0156-z, Mediterr. J. Math. 5 (2008), 371-378. (2008) MR2465582DOI10.1007/s00009-008-0156-z
  2. Amouch, M., Zguitti, H., 10.1017/S0017089505002971, Glasgow Math. J. 48 (2006), 179-185. (2006) Zbl1097.47012MR2224938DOI10.1017/S0017089505002971
  3. Aiena, P., P. Peña, 10.1016/j.jmaa.2005.11.027, J. Math. Anal. Appl. 324 (2006), 566-579. (2006) MR2262492DOI10.1016/j.jmaa.2005.11.027
  4. Barnes, B. A., 10.1007/BF01236471, Integral Equations Oper. Theory 34 (1999), 187-196. (1999) Zbl0948.47002MR1694707DOI10.1007/BF01236471
  5. Berkani, M., 10.1016/S0022-247X(02)00179-8, J. Math. Anal. Applications 272 (2002), 596-603. (2002) Zbl1043.47004MR1930862DOI10.1016/S0022-247X(02)00179-8
  6. Berkani, M., 10.1007/s10114-005-0720-4, Acta Mathematica Sinica, English series 23 (2007), 103-110. (2007) Zbl1116.47015MR2275483DOI10.1007/s10114-005-0720-4
  7. Berkani, M., 10.1090/S0002-9939-01-06291-8, Proc. Amer. Math. Soc. 130 (2002), 1717-1723. (2002) Zbl0996.47015MR1887019DOI10.1090/S0002-9939-01-06291-8
  8. Berkani, M., Koliha, J. J., Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376. (2003) Zbl1050.47014MR1991673
  9. Berkani, M., Sarih, M., 10.1017/S0017089501030075, Glasgow Math. J. 43 (2001), 457-465. (2001) Zbl0995.47008MR1878588DOI10.1017/S0017089501030075
  10. Coburn, L. A., 10.1307/mmj/1031732778, Michigan Math. J. 13 (1966), 285-288. (1966) Zbl0173.42904MR0201969DOI10.1307/mmj/1031732778
  11. Djordjević, S. V., Han, Y. M., 10.1017/S0017089500030147, Glasgow Math. J. 42 (2000), 479-486. (2000) Zbl0979.47004MR1793814DOI10.1017/S0017089500030147
  12. Heuser, H., Functionl Analysis, John Wiley, New York (1982). (1982) 
  13. Radjavi, H., Rosenthal, P., Invariant Subspaces, Springer, Berlin (1973). (1973) Zbl0269.47003MR0367682
  14. Rakočević, V., Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919. (1989) MR1030982
  15. Rakočević, V., On a class of operators, Mat. Vesnik. 37 (1985), 423-426. (1985) MR0836891
  16. Taylor, A. E., 10.1007/BF02052483, Math. Ann. 163 (1966), 18-49. (1966) Zbl0138.07602MR0190759DOI10.1007/BF02052483

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.