Extended Weyl type theorems
Mathematica Bohemica (2009)
- Volume: 134, Issue: 4, page 369-378
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBerkani, M., and Zariouh, H.. "Extended Weyl type theorems." Mathematica Bohemica 134.4 (2009): 369-378. <http://eudml.org/doc/38099>.
@article{Berkani2009,
abstract = {An operator $T$ acting on a Banach space $X$ possesses property $(\{\rm gw\})$ if $\sigma _a(T)\setminus \sigma _\{\{\rm SBF\}_+^-\}(T)= E(T), $ where $\sigma _a(T)$ is the approximate point spectrum of $T$, $\sigma _\{\{\rm SBF\} _+^-\}(T)$ is the essential semi-B-Fredholm spectrum of $T$ and $E(T)$ is the set of all isolated eigenvalues of $T.$ In this paper we introduce and study two new properties $(\{\rm b\})$ and $(\{\rm gb\})$ in connection with Weyl type theorems, which are analogous respectively to Browder’s theorem and generalized Browder’s theorem. Among other, we prove that if $T$ is a bounded linear operator acting on a Banach space $X$, then property $(\{\rm gw\})$ holds for $T$ if and only if property $(\{\rm gb\})$ holds for $T$ and $E(T)=\Pi (T),$ where $\Pi (T)$ is the set of all poles of the resolvent of $T.$},
author = {Berkani, M., Zariouh, H.},
journal = {Mathematica Bohemica},
keywords = {B-Fredholm operator; Browder’s theorem; generalized Browder’s theorem; property $(\{\rm b\})$; property $(\{\rm gb\})$; B-Fredholm operator; Browder's theorem; generalized Browder's theorem; property (b); property (gb)},
language = {eng},
number = {4},
pages = {369-378},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extended Weyl type theorems},
url = {http://eudml.org/doc/38099},
volume = {134},
year = {2009},
}
TY - JOUR
AU - Berkani, M.
AU - Zariouh, H.
TI - Extended Weyl type theorems
JO - Mathematica Bohemica
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 134
IS - 4
SP - 369
EP - 378
AB - An operator $T$ acting on a Banach space $X$ possesses property $({\rm gw})$ if $\sigma _a(T)\setminus \sigma _{{\rm SBF}_+^-}(T)= E(T), $ where $\sigma _a(T)$ is the approximate point spectrum of $T$, $\sigma _{{\rm SBF} _+^-}(T)$ is the essential semi-B-Fredholm spectrum of $T$ and $E(T)$ is the set of all isolated eigenvalues of $T.$ In this paper we introduce and study two new properties $({\rm b})$ and $({\rm gb})$ in connection with Weyl type theorems, which are analogous respectively to Browder’s theorem and generalized Browder’s theorem. Among other, we prove that if $T$ is a bounded linear operator acting on a Banach space $X$, then property $({\rm gw})$ holds for $T$ if and only if property $({\rm gb})$ holds for $T$ and $E(T)=\Pi (T),$ where $\Pi (T)$ is the set of all poles of the resolvent of $T.$
LA - eng
KW - B-Fredholm operator; Browder’s theorem; generalized Browder’s theorem; property $({\rm b})$; property $({\rm gb})$; B-Fredholm operator; Browder's theorem; generalized Browder's theorem; property (b); property (gb)
UR - http://eudml.org/doc/38099
ER -
References
top- Amouch, M., Berkani, M., 10.1007/s00009-008-0156-z, Mediterr. J. Math. 5 (2008), 371-378. (2008) MR2465582DOI10.1007/s00009-008-0156-z
- Amouch, M., Zguitti, H., 10.1017/S0017089505002971, Glasgow Math. J. 48 (2006), 179-185. (2006) Zbl1097.47012MR2224938DOI10.1017/S0017089505002971
- Aiena, P., P. Peña, 10.1016/j.jmaa.2005.11.027, J. Math. Anal. Appl. 324 (2006), 566-579. (2006) MR2262492DOI10.1016/j.jmaa.2005.11.027
- Barnes, B. A., 10.1007/BF01236471, Integral Equations Oper. Theory 34 (1999), 187-196. (1999) Zbl0948.47002MR1694707DOI10.1007/BF01236471
- Berkani, M., 10.1016/S0022-247X(02)00179-8, J. Math. Anal. Applications 272 (2002), 596-603. (2002) Zbl1043.47004MR1930862DOI10.1016/S0022-247X(02)00179-8
- Berkani, M., 10.1007/s10114-005-0720-4, Acta Mathematica Sinica, English series 23 (2007), 103-110. (2007) Zbl1116.47015MR2275483DOI10.1007/s10114-005-0720-4
- Berkani, M., 10.1090/S0002-9939-01-06291-8, Proc. Amer. Math. Soc. 130 (2002), 1717-1723. (2002) Zbl0996.47015MR1887019DOI10.1090/S0002-9939-01-06291-8
- Berkani, M., Koliha, J. J., Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376. (2003) Zbl1050.47014MR1991673
- Berkani, M., Sarih, M., 10.1017/S0017089501030075, Glasgow Math. J. 43 (2001), 457-465. (2001) Zbl0995.47008MR1878588DOI10.1017/S0017089501030075
- Coburn, L. A., 10.1307/mmj/1031732778, Michigan Math. J. 13 (1966), 285-288. (1966) Zbl0173.42904MR0201969DOI10.1307/mmj/1031732778
- Djordjević, S. V., Han, Y. M., 10.1017/S0017089500030147, Glasgow Math. J. 42 (2000), 479-486. (2000) Zbl0979.47004MR1793814DOI10.1017/S0017089500030147
- Heuser, H., Functionl Analysis, John Wiley, New York (1982). (1982)
- Radjavi, H., Rosenthal, P., Invariant Subspaces, Springer, Berlin (1973). (1973) Zbl0269.47003MR0367682
- Rakočević, V., Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919. (1989) MR1030982
- Rakočević, V., On a class of operators, Mat. Vesnik. 37 (1985), 423-426. (1985) MR0836891
- Taylor, A. E., 10.1007/BF02052483, Math. Ann. 163 (1966), 18-49. (1966) Zbl0138.07602MR0190759DOI10.1007/BF02052483
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.