Isotopy invariant quasigroup identities

Aleksandar Krapež; Bojan Marinković

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 4, page 537-547
  • ISSN: 0010-2628

Abstract

top
According to S. Krstić, there are only four quadratic varieties which are closed under isotopy. We give a simple procedure generating quadratic identities and deciding which of the four varieties they define. There are about 37000 such identities with up to five variables.

How to cite

top

Krapež, Aleksandar, and Marinković, Bojan. "Isotopy invariant quasigroup identities." Commentationes Mathematicae Universitatis Carolinae 57.4 (2016): 537-547. <http://eudml.org/doc/287576>.

@article{Krapež2016,
abstract = {According to S. Krstić, there are only four quadratic varieties which are closed under isotopy. We give a simple procedure generating quadratic identities and deciding which of the four varieties they define. There are about 37000 such identities with up to five variables.},
author = {Krapež, Aleksandar, Marinković, Bojan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quasigroup; $3$-sorted quasigroup; homotopy; isotopy; quadratic identity; gemini identity; coherent identity; variety closed under isotopy (homotopy)},
language = {eng},
number = {4},
pages = {537-547},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Isotopy invariant quasigroup identities},
url = {http://eudml.org/doc/287576},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Krapež, Aleksandar
AU - Marinković, Bojan
TI - Isotopy invariant quasigroup identities
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 4
SP - 537
EP - 547
AB - According to S. Krstić, there are only four quadratic varieties which are closed under isotopy. We give a simple procedure generating quadratic identities and deciding which of the four varieties they define. There are about 37000 such identities with up to five variables.
LA - eng
KW - quasigroup; $3$-sorted quasigroup; homotopy; isotopy; quadratic identity; gemini identity; coherent identity; variety closed under isotopy (homotopy)
UR - http://eudml.org/doc/287576
ER -

References

top
  1. Belousov V.D., Balanced identities in quasigroups, Mat. Sbornik 70 (112) (1966), 55–97 (Russian). Zbl0199.05203MR0202898
  2. Belousov V.D., Algebraic Nets and Quasigroups, Ştiinca, Kishinev, 1971 (Russian). 
  3. Belyavskaya G.B., Parastrophically equivalent identities characterizing quasigroups isotopic to abelian groups, Quasigroups Related Systems 22 (2014), no. 1, 19–32. Zbl1303.20068MR3266749
  4. Birkhoff G., Lipson J.D., 10.1016/S0021-9800(70)80014-X, J. Combinatorial Theory 8 (1970), 115–133. Zbl0211.02003MR0250887DOI10.1016/S0021-9800(70)80014-X
  5. Brožíková E., On universal quasigroup identities, Math. Bohem. 117 (1992), no. 1, 20–32. Zbl0771.20023MR1154051
  6. Drápal A., 10.1007/s10587-005-0004-2, Czechoslovak Math. J. 55(130) (2005), 61–87. Zbl1081.20078MR2121656DOI10.1007/s10587-005-0004-2
  7. Falconer E., 10.1090/S0002-9947-1970-0272932-4, Trans. Amer. Math. Soc. 151 (1970), no. 2, 511–526. Zbl0209.04701MR0272932DOI10.1090/S0002-9947-1970-0272932-4
  8. Gvaramiya A.A., Automata and quasigroups, Soobshch. Akad. Nauk Gruzin. SSR 114 (1984), no. 3, 481–484 (Russian). Zbl0566.68052MR0782270
  9. Gvaramiya A.A., 10.1007/BF00968618, Sibirsk. Mat. Zh. 26 (1985), no. 3, 11–30 (Russian); http://dx.doi.org/10.1007/BF00968618; English translation: Siberian Math. J. 26 (1985), 315–331, DOI: 10.1007/BF00968618. Zbl0622.68050MR0792051DOI10.1007/BF00968618
  10. Gvaramiya A.A., Quasigroup classes that are invariant under isotopy, and abstract classes of invertible automata, Dokl. Akad. Nauk SSSR 282 (1985), no. 5, 1047–1051 (Russian); English translation: Soviet. Math. Dokl. 31 (1985), 545–549. MR0796940
  11. Gvaramiya A.A., Category of quasigroups with homotopies, C.R. Acad. Bulgare Sci. 38 (1985), no. 6, 663–666. Zbl0574.20057MR0805437
  12. Gvaramiya A.A., Plotkin B.I., The homotopies of quasigroups and universal algebras, in A. Romanowska, J.D.H. Smith (eds.), Universal Algebra and Quasigroup Theory (Jadwisin, 1989), Res. Expo. Math., 19, Heldermann, Berlin, 1992, pp. 89–99. Zbl0818.20088MR1191228
  13. Krapež A., Taylor M.A., Gemini functional equations on quasigroups, Publ. Math. Debrecen 47 (1995), no. 3–4, 281-292. Zbl0859.39014MR1362290
  14. Krstić S., Quadratic quasigroup identities, PhD thesis (Serbocroatian), University of Belgrade, 1985, http//elibrary.matf.bg.ac.rs/handle/123456789/182/phdSavaKrstic.pdf, (accessed May 5, 2015). 
  15. Krstić S., On quasigroup varieties closed under isotopies, Publ. Inst. Math. (Beograd) (N.S.) 39(53) (1986), 89–95. MR0869181
  16. Manzano M., Extensions of First Order Logic, Cambridge Tracts in Theoretical Computer Science, 19, Cambridge University Press, Cambridge, New York, 2005. Zbl0848.03001MR1386188
  17. Milić S., On GD–groupoids with applications to n –ary quasigroups, Publ. Inst. Math. (Beograd) (N.S.) 13(27) (1972), 65–76. Zbl0252.20056MR0335669
  18. Petrescu A., Certain questions of the theory of homotopy of universal algebras, in Contributions to universal algebra (Colloq. Math. Soc. Janos Boylai Vol. 17), North Holland, Amsterdam, 1977, pp. 341–355. Zbl0367.08002MR0472641
  19. Satyabhama V., Generalized distributivity equation on GD-groupoids, Mat. Vesnik 29 (1977), no. 1, 137–146. MR0463343
  20. Shahbazpour Kh., An hyperidentity concerning the quasigroup identities isotopy closure to abelian group, Austral. J. Basic Appl. Sci. 3(4), (2009). 
  21. Sioson F.M., On generalized algebras, Portugal. Math. 25 (1966), 67–90. Zbl0166.01004MR0210646
  22. Sokhatskii F.N., On isotopes of groups II, Ukrain. Mat. Zh. 47 (1995), no. 12, 1692–1703 (Ukrainian); English translation: Ukrainian Math. J. 47 (1995), no. 12, 1935–1948. MR1389002
  23. Stojaković Z., Generalized entropy on GD–groupoids with application to quasigroups of various arities, Mat. Vesnik 24 (1972), no. 1, 159–166. 
  24. Voutsadakis G., 10.1023/A:1023055207145, Theory Appl. Categ. 11 (2003), no. 1, 1–14. Zbl1050.20047MR1988069DOI10.1023/A:1023055207145

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.