Parallel and totally geodesic hypersurfaces of solvable Lie groups
Archivum Mathematicum (2016)
- Volume: 052, Issue: 4, page 221-231
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topNasehi, Mehri. "Parallel and totally geodesic hypersurfaces of solvable Lie groups." Archivum Mathematicum 052.4 (2016): 221-231. <http://eudml.org/doc/287579>.
@article{Nasehi2016,
abstract = {In this paper we consider special examples of homogeneous spaces of arbitrary odd dimension which are given in [5] and [16]. We obtain the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces in both Riemannian and Lorentzian cases.},
author = {Nasehi, Mehri},
journal = {Archivum Mathematicum},
keywords = {totally geodesic; parallel; hypersurface; solvable Lie group},
language = {eng},
number = {4},
pages = {221-231},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Parallel and totally geodesic hypersurfaces of solvable Lie groups},
url = {http://eudml.org/doc/287579},
volume = {052},
year = {2016},
}
TY - JOUR
AU - Nasehi, Mehri
TI - Parallel and totally geodesic hypersurfaces of solvable Lie groups
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 4
SP - 221
EP - 231
AB - In this paper we consider special examples of homogeneous spaces of arbitrary odd dimension which are given in [5] and [16]. We obtain the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces in both Riemannian and Lorentzian cases.
LA - eng
KW - totally geodesic; parallel; hypersurface; solvable Lie group
UR - http://eudml.org/doc/287579
ER -
References
top- Aghasi, M., Nasehi, M., Some geometrical properties of a five-dimensional solvable Lie group, Differ. Geom. Dyn. Syst. 15 (2013), 1–12. (2013) Zbl1331.53071MR3073067
- Aghasi, M., Nasehi, M., On homogeneous Randers spaces with Douglas or naturally reductive metrics, Differ. Geom. Dyn. Syst. 17 (2015), 1–12. (2015) Zbl1333.53068MR3367072
- Aghasi, M., Nasehi, M., 10.1515/advgeom-2015-0025, Adv. Geom. 15 (4) (2015), 507–517. (2015) Zbl1328.53062MR3406478DOI10.1515/advgeom-2015-0025
- Belkhelfa, M., Dillen, F., Inoguchi, J., Surfaces with parallel second fundamental form in Bianchi Cartan Vranceanu spaces, PDE's, Submanifolds and affine differential geometry, vol. 57, Banach Centre Publishing, Polish Academy Sciences, Warsaw, 2002, pp. 67–87. (2002) Zbl1029.53071MR1972463
- Božek, M., Existence of generalized symmetric Riemannian spaces with solvable isometry group, Časopis pěest. mat. 105 (1980), 368–384. (1980) Zbl0475.53045MR0597914
- Calvaruso, G., Kowalski, O., Marinosci, R., 10.1023/B:AMHU.0000004942.87374.0e, Acta Math. Hungar. 101 (2003), 313–322. (2003) Zbl1057.53041MR2017938DOI10.1023/B:AMHU.0000004942.87374.0e
- Calvaruso, G., Van der Veken, J.,, 10.1142/S0129167X09005728, Internat. J. Math. 20 (2009), 1185–1205. (2009) Zbl1177.53018MR2574312DOI10.1142/S0129167X09005728
- Calvaruso, G., Van der Veken, J.,, 10.11650/twjm/1500405737, Taiwanese J. Math. 14 (2010), 223–250. (2010) Zbl1194.53019MR2603452DOI10.11650/twjm/1500405737
- Calvaruso, G., Van der Veken, J.,, 10.1007/s00025-012-0304-4, Results Math. 64 (2013), 135–153. (2013) Zbl1279.53056MR3095133DOI10.1007/s00025-012-0304-4
- Chen, B.-Y., 10.1016/j.geomphys.2009.09.012, J. Geom. Phys. 60 (2010), 260–280. (2010) Zbl1205.53061MR2587393DOI10.1016/j.geomphys.2009.09.012
- Chen, B.-Y., Van der Veken, J.,, 10.2748/tmj/1238764545, Tohoku Math. J. 61 (2009), 1–40. (2009) Zbl1182.53018MR2501861DOI10.2748/tmj/1238764545
- De Leo, B., Van der Veken, J.,, 10.1007/s10711-011-9665-1, Geom. Dedicata 159 (2012), 373–387. (2012) Zbl1247.53076MR2944538DOI10.1007/s10711-011-9665-1
- Dillen, F., Van der Veken, J.,, 10.1016/j.difgeo.2007.11.001, Differential Geom. Appl. 26 (1) (2008), 1–8. (2008) Zbl1142.53017MR2393968DOI10.1016/j.difgeo.2007.11.001
- Inoguchi, J., Van der Veken, J.,, Parallel surfaces in the motion groups E(1, 1) and E(2), Bull. Belg. Math. Soc. Simon Stevin. 14 (2007), 321–332. (2007) Zbl1125.53040MR2341567
- Inoguchi, J., Van der Veken, J.,, 10.1007/s10711-007-9222-0, Geom. Dedicata 131 (2008), 159–172. (2008) Zbl1136.53016MR2369197DOI10.1007/s10711-007-9222-0
- Kowalski, O., Generalized Symmetric Spaces, Lecture Notes in Math., vol. 805, Springer-Verlag, Berlin, Heidelberg, New York, 1980. (1980) Zbl0431.53042MR0579184
- Lawson, H.B., 10.2307/1970816, Ann. of Math. (2) 89 (1969), 187–197. (1969) Zbl0174.24901MR0238229DOI10.2307/1970816
- Nasehi, M., 10.1007/s10587-016-0274-x, Czechoslovak Math. J. 66 (2) (2016), 547–559. (2016) MR3519620DOI10.1007/s10587-016-0274-x
- Simon, U., Weinstein, A., 10.1007/BF01173099, Manuscripta Math. 1 (1969), 139–146. (1969) Zbl0172.46701MR0246234DOI10.1007/BF01173099
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.