Parallel and totally geodesic hypersurfaces of solvable Lie groups

Mehri Nasehi

Archivum Mathematicum (2016)

  • Volume: 052, Issue: 4, page 221-231
  • ISSN: 0044-8753

Abstract

top
In this paper we consider special examples of homogeneous spaces of arbitrary odd dimension which are given in [5] and [16]. We obtain the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces in both Riemannian and Lorentzian cases.

How to cite

top

Nasehi, Mehri. "Parallel and totally geodesic hypersurfaces of solvable Lie groups." Archivum Mathematicum 052.4 (2016): 221-231. <http://eudml.org/doc/287579>.

@article{Nasehi2016,
abstract = {In this paper we consider special examples of homogeneous spaces of arbitrary odd dimension which are given in [5] and [16]. We obtain the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces in both Riemannian and Lorentzian cases.},
author = {Nasehi, Mehri},
journal = {Archivum Mathematicum},
keywords = {totally geodesic; parallel; hypersurface; solvable Lie group},
language = {eng},
number = {4},
pages = {221-231},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Parallel and totally geodesic hypersurfaces of solvable Lie groups},
url = {http://eudml.org/doc/287579},
volume = {052},
year = {2016},
}

TY - JOUR
AU - Nasehi, Mehri
TI - Parallel and totally geodesic hypersurfaces of solvable Lie groups
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 4
SP - 221
EP - 231
AB - In this paper we consider special examples of homogeneous spaces of arbitrary odd dimension which are given in [5] and [16]. We obtain the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces in both Riemannian and Lorentzian cases.
LA - eng
KW - totally geodesic; parallel; hypersurface; solvable Lie group
UR - http://eudml.org/doc/287579
ER -

References

top
  1. Aghasi, M., Nasehi, M., Some geometrical properties of a five-dimensional solvable Lie group, Differ. Geom. Dyn. Syst. 15 (2013), 1–12. (2013) Zbl1331.53071MR3073067
  2. Aghasi, M., Nasehi, M., On homogeneous Randers spaces with Douglas or naturally reductive metrics, Differ. Geom. Dyn. Syst. 17 (2015), 1–12. (2015) Zbl1333.53068MR3367072
  3. Aghasi, M., Nasehi, M., 10.1515/advgeom-2015-0025, Adv. Geom. 15 (4) (2015), 507–517. (2015) Zbl1328.53062MR3406478DOI10.1515/advgeom-2015-0025
  4. Belkhelfa, M., Dillen, F., Inoguchi, J., Surfaces with parallel second fundamental form in Bianchi Cartan Vranceanu spaces, PDE's, Submanifolds and affine differential geometry, vol. 57, Banach Centre Publishing, Polish Academy Sciences, Warsaw, 2002, pp. 67–87. (2002) Zbl1029.53071MR1972463
  5. Božek, M., Existence of generalized symmetric Riemannian spaces with solvable isometry group, Časopis pěest. mat. 105 (1980), 368–384. (1980) Zbl0475.53045MR0597914
  6. Calvaruso, G., Kowalski, O., Marinosci, R., 10.1023/B:AMHU.0000004942.87374.0e, Acta Math. Hungar. 101 (2003), 313–322. (2003) Zbl1057.53041MR2017938DOI10.1023/B:AMHU.0000004942.87374.0e
  7. Calvaruso, G., Van der Veken, J.,, 10.1142/S0129167X09005728, Internat. J. Math. 20 (2009), 1185–1205. (2009) Zbl1177.53018MR2574312DOI10.1142/S0129167X09005728
  8. Calvaruso, G., Van der Veken, J.,, 10.11650/twjm/1500405737, Taiwanese J. Math. 14 (2010), 223–250. (2010) Zbl1194.53019MR2603452DOI10.11650/twjm/1500405737
  9. Calvaruso, G., Van der Veken, J.,, 10.1007/s00025-012-0304-4, Results Math. 64 (2013), 135–153. (2013) Zbl1279.53056MR3095133DOI10.1007/s00025-012-0304-4
  10. Chen, B.-Y., 10.1016/j.geomphys.2009.09.012, J. Geom. Phys. 60 (2010), 260–280. (2010) Zbl1205.53061MR2587393DOI10.1016/j.geomphys.2009.09.012
  11. Chen, B.-Y., Van der Veken, J.,, 10.2748/tmj/1238764545, Tohoku Math. J. 61 (2009), 1–40. (2009) Zbl1182.53018MR2501861DOI10.2748/tmj/1238764545
  12. De Leo, B., Van der Veken, J.,, 10.1007/s10711-011-9665-1, Geom. Dedicata 159 (2012), 373–387. (2012) Zbl1247.53076MR2944538DOI10.1007/s10711-011-9665-1
  13. Dillen, F., Van der Veken, J.,, 10.1016/j.difgeo.2007.11.001, Differential Geom. Appl. 26 (1) (2008), 1–8. (2008) Zbl1142.53017MR2393968DOI10.1016/j.difgeo.2007.11.001
  14. Inoguchi, J., Van der Veken, J.,, Parallel surfaces in the motion groups E(1, 1) and E(2), Bull. Belg. Math. Soc. Simon Stevin. 14 (2007), 321–332. (2007) Zbl1125.53040MR2341567
  15. Inoguchi, J., Van der Veken, J.,, 10.1007/s10711-007-9222-0, Geom. Dedicata 131 (2008), 159–172. (2008) Zbl1136.53016MR2369197DOI10.1007/s10711-007-9222-0
  16. Kowalski, O., Generalized Symmetric Spaces, Lecture Notes in Math., vol. 805, Springer-Verlag, Berlin, Heidelberg, New York, 1980. (1980) Zbl0431.53042MR0579184
  17. Lawson, H.B., 10.2307/1970816, Ann. of Math. (2) 89 (1969), 187–197. (1969) Zbl0174.24901MR0238229DOI10.2307/1970816
  18. Nasehi, M., 10.1007/s10587-016-0274-x, Czechoslovak Math. J. 66 (2) (2016), 547–559. (2016) MR3519620DOI10.1007/s10587-016-0274-x
  19. Simon, U., Weinstein, A., 10.1007/BF01173099, Manuscripta Math. 1 (1969), 139–146. (1969) Zbl0172.46701MR0246234DOI10.1007/BF01173099

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.