Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 547-559
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNasehi, Mehri. "Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds." Czechoslovak Mathematical Journal 66.2 (2016): 547-559. <http://eudml.org/doc/280091>.
@article{Nasehi2016,
abstract = {In this paper we study parallel and totally geodesic hypersurfaces of two-step homogeneous nilmanifolds of dimension five. We give the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces. Moreover, we prove that two-step homogeneous nilmanifolds of dimension five which have one-dimensional centre never admit parallel hypersurfaces. Also we prove that the only two-step homogeneous nilmanifolds of dimension five which admit totally geodesic hypersurfaces have three-dimensional centre.},
author = {Nasehi, Mehri},
journal = {Czechoslovak Mathematical Journal},
keywords = {hypersurface; totally geodesic hypersurface; parallel geodesic hypersurfaces; two-step homogeneous nilmanifold},
language = {eng},
number = {2},
pages = {547-559},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds},
url = {http://eudml.org/doc/280091},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Nasehi, Mehri
TI - Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 547
EP - 559
AB - In this paper we study parallel and totally geodesic hypersurfaces of two-step homogeneous nilmanifolds of dimension five. We give the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces. Moreover, we prove that two-step homogeneous nilmanifolds of dimension five which have one-dimensional centre never admit parallel hypersurfaces. Also we prove that the only two-step homogeneous nilmanifolds of dimension five which admit totally geodesic hypersurfaces have three-dimensional centre.
LA - eng
KW - hypersurface; totally geodesic hypersurface; parallel geodesic hypersurfaces; two-step homogeneous nilmanifold
UR - http://eudml.org/doc/280091
ER -
References
top- Aghasi, M., Nasehi, M., On homogeneous Randers spaces with Douglas or naturally reductive metrics, Differ. Geom. Dyn. Syst. 17 (2015), 1-12. (2015) Zbl1333.53068MR3367072
- Aghasi, M., Nasehi, M., 10.1515/advgeom-2015-0025, Adv. Geom. 15 507-517 (2015). (2015) Zbl1328.53062MR3406478DOI10.1515/advgeom-2015-0025
- Aghasi, M., Nasehi, M., Some geometrical properties of a five-dimensional solvable Lie group, Differ. Geom. Dyn. Syst. 15 (2013), 1-12. (2013) Zbl1331.53071MR3073067
- Belkhelfa, M., Dillen, F., Inoguchi, J., Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces, PDEs, Submanifolds and Affine Differential Geometry, Warszawa, 2000 Polish Academy of Sciences, Inst. Math., Warszawa Banach Cent. Publ. 57 (2002), 67-87 B. Opozda, et al. (2002) Zbl1029.53071MR1972463
- Božek, M., Existence of generalized symmetric Riemannian spaces with solvable isometry group, Čas. Pěst. Mat. 105 (1980), 368-384. (1980) Zbl0475.53045MR0597914
- Calvaruso, G., Kowalski, O., Marinosci, R. A., 10.1023/B:AMHU.0000004942.87374.0e, Acta Math. Hungar. 101 (2003), 313-322. (2003) Zbl1057.53041MR2017938DOI10.1023/B:AMHU.0000004942.87374.0e
- Calvaruso, G., Veken, J. Van der, 10.1007/s00025-012-0304-4, Results Math. 64 (2013), 135-153. (2013) MR3095133DOI10.1007/s00025-012-0304-4
- Calvaruso, G., Veken, J. Van der, 10.11650/twjm/1500405737, Taiwanese J. Math. 14 (2010), 223-250. (2010) MR2603452DOI10.11650/twjm/1500405737
- Calvaruso, G., Veken, J. Van der, 10.1142/S0129167X09005728, Int. J. Math. 20 (2009), 1185-1205. (2009) MR2574312DOI10.1142/S0129167X09005728
- Chen, B.-Y., 10.1016/j.geomphys.2009.09.012, J. Geom. Phys. 60 (2010), 260-280. (2010) Zbl1205.53061MR2587393DOI10.1016/j.geomphys.2009.09.012
- Chen, B.-Y., Veken, J. Van der, 10.2748/tmj/1238764545, Tohoku Math. J. 61 (2009), 1-40. (2009) MR2501861DOI10.2748/tmj/1238764545
- Leo, B. De, Veken, J. Van der, 10.1007/s10711-011-9665-1, Geom. Dedicata 159 (2012), 373-387. (2012) MR2944538DOI10.1007/s10711-011-9665-1
- Homolya, S., Kowalski, O., Simply connected two-step homogeneous nilmanifolds of dimension 5, Note Mat. 26 (2006), 69-77. (2006) Zbl1115.53035MR2267683
- Inoguchi, J., Veken, J. Van der, 10.1007/s10711-007-9222-0, Geom. Dedicata 131 (2008), 159-172. (2008) MR2369197DOI10.1007/s10711-007-9222-0
- Inoguchi, J., Veken, J. Van der, 10.36045/bbms/1179839224, Bull. Belg. Math. Soc.-Simon Stevin 14 (2007), 321-332. (2007) MR2341567DOI10.36045/bbms/1179839224
- Kowalski, O., Generalized Symmetric Spaces, Lecture Notes in Mathematics 805 Springer, Berlin (1980). (1980) Zbl0431.53042MR0579184
- Lauret, J., 10.1023/A:1004936725971, Geom. Dedicata 68 (1997), 145-155. (1997) MR1484561DOI10.1023/A:1004936725971
- H. B. Lawson, Jr., 10.2307/1970816, Ann. Math. (2) 89 (1969), 187-197. (1969) Zbl0174.24901MR0238229DOI10.2307/1970816
- Moghaddam, H. R. Salimi, 10.1142/S0219887811005257, Int. J. Geom. Methods Mod. Phys. 8 (2011), 501-510. (2011) MR2807115DOI10.1142/S0219887811005257
- Simon, U., Weinstein, A., 10.1007/BF01173099, Manuscr. Math. 1 (1969), 139-146 German. (1969) Zbl0172.46701MR0246234DOI10.1007/BF01173099
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.