Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds

Mehri Nasehi

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 547-559
  • ISSN: 0011-4642

Abstract

top
In this paper we study parallel and totally geodesic hypersurfaces of two-step homogeneous nilmanifolds of dimension five. We give the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces. Moreover, we prove that two-step homogeneous nilmanifolds of dimension five which have one-dimensional centre never admit parallel hypersurfaces. Also we prove that the only two-step homogeneous nilmanifolds of dimension five which admit totally geodesic hypersurfaces have three-dimensional centre.

How to cite

top

Nasehi, Mehri. "Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds." Czechoslovak Mathematical Journal 66.2 (2016): 547-559. <http://eudml.org/doc/280091>.

@article{Nasehi2016,
abstract = {In this paper we study parallel and totally geodesic hypersurfaces of two-step homogeneous nilmanifolds of dimension five. We give the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces. Moreover, we prove that two-step homogeneous nilmanifolds of dimension five which have one-dimensional centre never admit parallel hypersurfaces. Also we prove that the only two-step homogeneous nilmanifolds of dimension five which admit totally geodesic hypersurfaces have three-dimensional centre.},
author = {Nasehi, Mehri},
journal = {Czechoslovak Mathematical Journal},
keywords = {hypersurface; totally geodesic hypersurface; parallel geodesic hypersurfaces; two-step homogeneous nilmanifold},
language = {eng},
number = {2},
pages = {547-559},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds},
url = {http://eudml.org/doc/280091},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Nasehi, Mehri
TI - Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 547
EP - 559
AB - In this paper we study parallel and totally geodesic hypersurfaces of two-step homogeneous nilmanifolds of dimension five. We give the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces. Moreover, we prove that two-step homogeneous nilmanifolds of dimension five which have one-dimensional centre never admit parallel hypersurfaces. Also we prove that the only two-step homogeneous nilmanifolds of dimension five which admit totally geodesic hypersurfaces have three-dimensional centre.
LA - eng
KW - hypersurface; totally geodesic hypersurface; parallel geodesic hypersurfaces; two-step homogeneous nilmanifold
UR - http://eudml.org/doc/280091
ER -

References

top
  1. Aghasi, M., Nasehi, M., On homogeneous Randers spaces with Douglas or naturally reductive metrics, Differ. Geom. Dyn. Syst. 17 (2015), 1-12. (2015) Zbl1333.53068MR3367072
  2. Aghasi, M., Nasehi, M., 10.1515/advgeom-2015-0025, Adv. Geom. 15 507-517 (2015). (2015) Zbl1328.53062MR3406478DOI10.1515/advgeom-2015-0025
  3. Aghasi, M., Nasehi, M., Some geometrical properties of a five-dimensional solvable Lie group, Differ. Geom. Dyn. Syst. 15 (2013), 1-12. (2013) Zbl1331.53071MR3073067
  4. Belkhelfa, M., Dillen, F., Inoguchi, J., Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces, PDEs, Submanifolds and Affine Differential Geometry, Warszawa, 2000 Polish Academy of Sciences, Inst. Math., Warszawa Banach Cent. Publ. 57 (2002), 67-87 B. Opozda, et al. (2002) Zbl1029.53071MR1972463
  5. Božek, M., Existence of generalized symmetric Riemannian spaces with solvable isometry group, Čas. Pěst. Mat. 105 (1980), 368-384. (1980) Zbl0475.53045MR0597914
  6. Calvaruso, G., Kowalski, O., Marinosci, R. A., 10.1023/B:AMHU.0000004942.87374.0e, Acta Math. Hungar. 101 (2003), 313-322. (2003) Zbl1057.53041MR2017938DOI10.1023/B:AMHU.0000004942.87374.0e
  7. Calvaruso, G., Veken, J. Van der, 10.1007/s00025-012-0304-4, Results Math. 64 (2013), 135-153. (2013) MR3095133DOI10.1007/s00025-012-0304-4
  8. Calvaruso, G., Veken, J. Van der, 10.11650/twjm/1500405737, Taiwanese J. Math. 14 (2010), 223-250. (2010) MR2603452DOI10.11650/twjm/1500405737
  9. Calvaruso, G., Veken, J. Van der, 10.1142/S0129167X09005728, Int. J. Math. 20 (2009), 1185-1205. (2009) MR2574312DOI10.1142/S0129167X09005728
  10. Chen, B.-Y., 10.1016/j.geomphys.2009.09.012, J. Geom. Phys. 60 (2010), 260-280. (2010) Zbl1205.53061MR2587393DOI10.1016/j.geomphys.2009.09.012
  11. Chen, B.-Y., Veken, J. Van der, 10.2748/tmj/1238764545, Tohoku Math. J. 61 (2009), 1-40. (2009) MR2501861DOI10.2748/tmj/1238764545
  12. Leo, B. De, Veken, J. Van der, 10.1007/s10711-011-9665-1, Geom. Dedicata 159 (2012), 373-387. (2012) MR2944538DOI10.1007/s10711-011-9665-1
  13. Homolya, S., Kowalski, O., Simply connected two-step homogeneous nilmanifolds of dimension 5, Note Mat. 26 (2006), 69-77. (2006) Zbl1115.53035MR2267683
  14. Inoguchi, J., Veken, J. Van der, 10.1007/s10711-007-9222-0, Geom. Dedicata 131 (2008), 159-172. (2008) MR2369197DOI10.1007/s10711-007-9222-0
  15. Inoguchi, J., Veken, J. Van der, 10.36045/bbms/1179839224, Bull. Belg. Math. Soc.-Simon Stevin 14 (2007), 321-332. (2007) MR2341567DOI10.36045/bbms/1179839224
  16. Kowalski, O., Generalized Symmetric Spaces, Lecture Notes in Mathematics 805 Springer, Berlin (1980). (1980) Zbl0431.53042MR0579184
  17. Lauret, J., 10.1023/A:1004936725971, Geom. Dedicata 68 (1997), 145-155. (1997) MR1484561DOI10.1023/A:1004936725971
  18. H. B. Lawson, Jr., 10.2307/1970816, Ann. Math. (2) 89 (1969), 187-197. (1969) Zbl0174.24901MR0238229DOI10.2307/1970816
  19. Moghaddam, H. R. Salimi, 10.1142/S0219887811005257, Int. J. Geom. Methods Mod. Phys. 8 (2011), 501-510. (2011) MR2807115DOI10.1142/S0219887811005257
  20. Simon, U., Weinstein, A., 10.1007/BF01173099, Manuscr. Math. 1 (1969), 139-146 German. (1969) Zbl0172.46701MR0246234DOI10.1007/BF01173099

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.