Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems
Béla J. Szekeres; Ferenc Izsák
Applications of Mathematics (2017)
- Volume: 62, Issue: 1, page 15-36
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSzekeres, Béla J., and Izsák, Ferenc. "Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems." Applications of Mathematics 62.1 (2017): 15-36. <http://eudml.org/doc/287590>.
@article{Szekeres2017,
abstract = {Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on $\mathbb \{R\}^2$ and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments.},
author = {Szekeres, Béla J., Izsák, Ferenc},
journal = {Applications of Mathematics},
keywords = {fractional diffusion problem; finite differences; matrix transformation method},
language = {eng},
number = {1},
pages = {15-36},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems},
url = {http://eudml.org/doc/287590},
volume = {62},
year = {2017},
}
TY - JOUR
AU - Szekeres, Béla J.
AU - Izsák, Ferenc
TI - Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 15
EP - 36
AB - Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on $\mathbb {R}^2$ and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments.
LA - eng
KW - fractional diffusion problem; finite differences; matrix transformation method
UR - http://eudml.org/doc/287590
ER -
References
top- Abatangelo, N., Dupaigne, L., 10.1016/j.anihpc.2016.02.001, To appear in Ann. Inst. Henri Poincaré, Anal. Non. Linéaire (2016). (2016) MR3610940DOI10.1016/j.anihpc.2016.02.001
- Bátkai, A., Csomós, P., Farkas, B., Semigroups for Numerical Analysis, Internet-Seminar Manuscript, 2012, tt{https://isem-mathematik.uibk.ac.at}.
- Benson, D. A., Wheatcraft, S. W., Meerschaert, M. M., 10.1029/2000wr900031, Water Resour. Res. 36 (2000), 1403-1412. (2000) DOI10.1029/2000wr900031
- Canuto, C., Quarteroni, A., 10.1007/bf02576357, Calcolo 18 (1981), 197-217. (1981) Zbl0485.65078MR0647825DOI10.1007/bf02576357
- Nezza, E. Di, Palatucci, G., Valdinoci, E., 10.1016/j.bulsci.2011.12.004, Bull. Sci. Math. 136 (2012), 521-573. (2012) Zbl1252.46023MR2944369DOI10.1016/j.bulsci.2011.12.004
- Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K., 10.1137/110833294, SIAM Rev. 54 (2012), 667-696. (2012) Zbl06122544MR3023366DOI10.1137/110833294
- Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K., 10.1142/S0218202512500546, Math. Models Methods Appl. Sci. 23 (2013), 493-540. (2013) Zbl1266.26020MR3010838DOI10.1142/S0218202512500546
- A. M. Edwards, R. A. Phillips, N. W. Watkins, M. P. Freeman, E. J. Murphy, V. Afanasyev, S. V. Buldyrev, M. G. E. da Luz, E. P. Raposo, H. E. Stanley, G. M. Viswanathan, 10.1038/nature06199, Nature 449 (2007), 1044-1048. (2007) MR2550512DOI10.1038/nature06199
- Engel, K.-J., Nagel, R., 10.1007/b97696, Graduate Texts in Mathematics 194, Springer, Berlin (2000). (2000) Zbl0952.47036MR1721989DOI10.1007/b97696
- Feng, L. B., Zhuang, P., Liu, F., Turner, I., 10.1016/j.amc.2014.12.060, Appl. Math. Comput. 257 (2015), 52-65. (2015) Zbl1339.65144MR3320648DOI10.1016/j.amc.2014.12.060
- Gradshteyn, I. S., Ryzhik, I. M., 10.1016/b978-0-12-294757-5.x5000-4, Academic Press, San Diego (2000). (2000) Zbl0981.65001MR1773820DOI10.1016/b978-0-12-294757-5.x5000-4
- Ilic, M., Liu, F., Turner, I., Anh, V., Numerical approximation of a fractional-in-space diffusion equation. I, Fract. Calc. Appl. Anal. 8 (2005), 323-341. (2005) Zbl1126.26009MR2252038
- Ilic, M., Liu, F., Turner, I., Anh, V., Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal. 9 (2006), 333-349. (2006) Zbl1132.35507MR2300467
- Ilić, M., Turner, I. W., Simpson, D. P., 10.1093/imanum/drp003, IMA J. Numer. Anal. 30 (2010), 1044-1061. (2010) Zbl1220.65052MR2727815DOI10.1093/imanum/drp003
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies 204, Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
- Li, C., Zhao, Z., Chen, Y., 10.1016/j.camwa.2011.02.045, Comput. Math. Appl. 62 (2011), 855-875. (2011) Zbl1228.65190MR2824676DOI10.1016/j.camwa.2011.02.045
- Liu, F., Zhuang, P., Anh, V., Turner, I., 10.21914/anziamj.v47i0.1030, ANZIAM J. 47 (2005), C48--C68. (2005) MR2226522DOI10.21914/anziamj.v47i0.1030
- Mainardi, F., Luchko, Y., Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal. 4 (2001), 153-192. (2001) Zbl1054.35156MR1829592
- Meerschaert, M. M., Tadjeran, C., 10.1016/j.cam.2004.01.033, J. Comput. Appl. Math. 172 (2004), 65-77. (2004) Zbl1126.76346MR2091131DOI10.1016/j.cam.2004.01.033
- Michelitsch, T., Maugin, G., Nowakowski, A., Nicolleau, F., Rahman, M., 10.2478/s13540-013-0052-5, Fract. Calc. Appl. Anal. 16 (2013), 827-859. (2013) Zbl1314.35209MR3124339DOI10.2478/s13540-013-0052-5
- Nochetto, R. H., Otárola, E., Salgado, A. J., 10.1007/s10208-014-9208-x, Found. Comput. Math. 15 (2015), 733-791. (2015) Zbl1347.65178MR3348172DOI10.1007/s10208-014-9208-x
- Pasciak, J. E., 10.2307/2006376, Math. Comput. 35 (1980), 1081-1092. (1980) Zbl0448.65071MR583488DOI10.2307/2006376
- Podlubny, I., 10.1016/s0076-5392(99)x8001-5, Mathematics in Science and Engineering 198, Academic Press, San Diego (1999). (1999) Zbl0924.34008MR1658022DOI10.1016/s0076-5392(99)x8001-5
- Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
- Szekeres, B. J., Izsák, F., 10.1515/math-2015-0056, Open Math. (electronic only) 13 (2015), 581-600. (2015) Zbl06632236MR3403508DOI10.1515/math-2015-0056
- Szekeres, B. J., Izsák, F., 10.1016/j.cam.2015.07.026, J. Comput. Appl. Math. 292 (2016), 553-561. (2016) Zbl1327.65215MR3392412DOI10.1016/j.cam.2015.07.026
- Tadjeran, C., Meerschaert, M. M., Scheffler, H.-P., 10.1016/j.jcp.2005.08.008, J. Comput. Phys. 213 (2006), 205-213. (2006) Zbl1089.65089MR2203439DOI10.1016/j.jcp.2005.08.008
- Tian, W., Zhou, H., Deng, W., 10.1090/S0025-5718-2015-02917-2, Math. Comput. 84 (2015), 1703-1727. (2015) Zbl1318.65058MR3335888DOI10.1090/S0025-5718-2015-02917-2
- Yang, Q., Turner, I., Moroney, T., Liu, F., 10.1016/j.apm.2014.02.005, Appl. Math. Model. 38 (2014), 3755-3762. (2014) MR3233804DOI10.1016/j.apm.2014.02.005
- Zhou, H., Tian, W., Deng, W., 10.1007/s10915-012-9661-0, J. Sci. Comput. 56 (2013), 45-66. (2013) Zbl1278.65130MR3049942DOI10.1007/s10915-012-9661-0
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.