Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems

Béla J. Szekeres; Ferenc Izsák

Applications of Mathematics (2017)

  • Volume: 62, Issue: 1, page 15-36
  • ISSN: 0862-7940

Abstract

top
Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on 2 and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments.

How to cite

top

Szekeres, Béla J., and Izsák, Ferenc. "Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems." Applications of Mathematics 62.1 (2017): 15-36. <http://eudml.org/doc/287590>.

@article{Szekeres2017,
abstract = {Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on $\mathbb \{R\}^2$ and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments.},
author = {Szekeres, Béla J., Izsák, Ferenc},
journal = {Applications of Mathematics},
keywords = {fractional diffusion problem; finite differences; matrix transformation method},
language = {eng},
number = {1},
pages = {15-36},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems},
url = {http://eudml.org/doc/287590},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Szekeres, Béla J.
AU - Izsák, Ferenc
TI - Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 15
EP - 36
AB - Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on $\mathbb {R}^2$ and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments.
LA - eng
KW - fractional diffusion problem; finite differences; matrix transformation method
UR - http://eudml.org/doc/287590
ER -

References

top
  1. Abatangelo, N., Dupaigne, L., 10.1016/j.anihpc.2016.02.001, To appear in Ann. Inst. Henri Poincaré, Anal. Non. Linéaire (2016). (2016) MR3610940DOI10.1016/j.anihpc.2016.02.001
  2. Bátkai, A., Csomós, P., Farkas, B., Semigroups for Numerical Analysis, Internet-Seminar Manuscript, 2012, tt{https://isem-mathematik.uibk.ac.at}. 
  3. Benson, D. A., Wheatcraft, S. W., Meerschaert, M. M., 10.1029/2000wr900031, Water Resour. Res. 36 (2000), 1403-1412. (2000) DOI10.1029/2000wr900031
  4. Canuto, C., Quarteroni, A., 10.1007/bf02576357, Calcolo 18 (1981), 197-217. (1981) Zbl0485.65078MR0647825DOI10.1007/bf02576357
  5. Nezza, E. Di, Palatucci, G., Valdinoci, E., 10.1016/j.bulsci.2011.12.004, Bull. Sci. Math. 136 (2012), 521-573. (2012) Zbl1252.46023MR2944369DOI10.1016/j.bulsci.2011.12.004
  6. Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K., 10.1137/110833294, SIAM Rev. 54 (2012), 667-696. (2012) Zbl06122544MR3023366DOI10.1137/110833294
  7. Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K., 10.1142/S0218202512500546, Math. Models Methods Appl. Sci. 23 (2013), 493-540. (2013) Zbl1266.26020MR3010838DOI10.1142/S0218202512500546
  8. A. M. Edwards, R. A. Phillips, N. W. Watkins, M. P. Freeman, E. J. Murphy, V. Afanasyev, S. V. Buldyrev, M. G. E. da Luz, E. P. Raposo, H. E. Stanley, G. M. Viswanathan, 10.1038/nature06199, Nature 449 (2007), 1044-1048. (2007) MR2550512DOI10.1038/nature06199
  9. Engel, K.-J., Nagel, R., 10.1007/b97696, Graduate Texts in Mathematics 194, Springer, Berlin (2000). (2000) Zbl0952.47036MR1721989DOI10.1007/b97696
  10. Feng, L. B., Zhuang, P., Liu, F., Turner, I., 10.1016/j.amc.2014.12.060, Appl. Math. Comput. 257 (2015), 52-65. (2015) Zbl1339.65144MR3320648DOI10.1016/j.amc.2014.12.060
  11. Gradshteyn, I. S., Ryzhik, I. M., 10.1016/b978-0-12-294757-5.x5000-4, Academic Press, San Diego (2000). (2000) Zbl0981.65001MR1773820DOI10.1016/b978-0-12-294757-5.x5000-4
  12. Ilic, M., Liu, F., Turner, I., Anh, V., Numerical approximation of a fractional-in-space diffusion equation. I, Fract. Calc. Appl. Anal. 8 (2005), 323-341. (2005) Zbl1126.26009MR2252038
  13. Ilic, M., Liu, F., Turner, I., Anh, V., Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal. 9 (2006), 333-349. (2006) Zbl1132.35507MR2300467
  14. Ilić, M., Turner, I. W., Simpson, D. P., 10.1093/imanum/drp003, IMA J. Numer. Anal. 30 (2010), 1044-1061. (2010) Zbl1220.65052MR2727815DOI10.1093/imanum/drp003
  15. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies 204, Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
  16. Li, C., Zhao, Z., Chen, Y., 10.1016/j.camwa.2011.02.045, Comput. Math. Appl. 62 (2011), 855-875. (2011) Zbl1228.65190MR2824676DOI10.1016/j.camwa.2011.02.045
  17. Liu, F., Zhuang, P., Anh, V., Turner, I., 10.21914/anziamj.v47i0.1030, ANZIAM J. 47 (2005), C48--C68. (2005) MR2226522DOI10.21914/anziamj.v47i0.1030
  18. Mainardi, F., Luchko, Y., Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal. 4 (2001), 153-192. (2001) Zbl1054.35156MR1829592
  19. Meerschaert, M. M., Tadjeran, C., 10.1016/j.cam.2004.01.033, J. Comput. Appl. Math. 172 (2004), 65-77. (2004) Zbl1126.76346MR2091131DOI10.1016/j.cam.2004.01.033
  20. Michelitsch, T., Maugin, G., Nowakowski, A., Nicolleau, F., Rahman, M., 10.2478/s13540-013-0052-5, Fract. Calc. Appl. Anal. 16 (2013), 827-859. (2013) Zbl1314.35209MR3124339DOI10.2478/s13540-013-0052-5
  21. Nochetto, R. H., Otárola, E., Salgado, A. J., 10.1007/s10208-014-9208-x, Found. Comput. Math. 15 (2015), 733-791. (2015) Zbl1347.65178MR3348172DOI10.1007/s10208-014-9208-x
  22. Pasciak, J. E., 10.2307/2006376, Math. Comput. 35 (1980), 1081-1092. (1980) Zbl0448.65071MR583488DOI10.2307/2006376
  23. Podlubny, I., 10.1016/s0076-5392(99)x8001-5, Mathematics in Science and Engineering 198, Academic Press, San Diego (1999). (1999) Zbl0924.34008MR1658022DOI10.1016/s0076-5392(99)x8001-5
  24. Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
  25. Szekeres, B. J., Izsák, F., 10.1515/math-2015-0056, Open Math. (electronic only) 13 (2015), 581-600. (2015) Zbl06632236MR3403508DOI10.1515/math-2015-0056
  26. Szekeres, B. J., Izsák, F., 10.1016/j.cam.2015.07.026, J. Comput. Appl. Math. 292 (2016), 553-561. (2016) Zbl1327.65215MR3392412DOI10.1016/j.cam.2015.07.026
  27. Tadjeran, C., Meerschaert, M. M., Scheffler, H.-P., 10.1016/j.jcp.2005.08.008, J. Comput. Phys. 213 (2006), 205-213. (2006) Zbl1089.65089MR2203439DOI10.1016/j.jcp.2005.08.008
  28. Tian, W., Zhou, H., Deng, W., 10.1090/S0025-5718-2015-02917-2, Math. Comput. 84 (2015), 1703-1727. (2015) Zbl1318.65058MR3335888DOI10.1090/S0025-5718-2015-02917-2
  29. Yang, Q., Turner, I., Moroney, T., Liu, F., 10.1016/j.apm.2014.02.005, Appl. Math. Model. 38 (2014), 3755-3762. (2014) MR3233804DOI10.1016/j.apm.2014.02.005
  30. Zhou, H., Tian, W., Deng, W., 10.1007/s10915-012-9661-0, J. Sci. Comput. 56 (2013), 45-66. (2013) Zbl1278.65130MR3049942DOI10.1007/s10915-012-9661-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.