Displaying similar documents to “On risk reserve under distribution constraints”

On reliability analysis of consecutive k -out-of- n systems with arbitrarily dependent components

Ebrahim Salehi (2016)

Applications of Mathematics

Similarity:

In this paper, we consider the linear and circular consecutive k -out-of- n systems consisting of arbitrarily dependent components. Under the condition that at least n - r + 1 components ( r n ) of the system are working at time t , we study the reliability properties of the residual lifetime of such systems. Also, we present some stochastic ordering properties of residual lifetime of consecutive k -out-of- n systems. In the following, we investigate the inactivity time of the component with lifetime...

A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes

Dietmar Ferger (2021)

Kybernetika

Similarity:

For lower-semicontinuous and convex stochastic processes Z n and nonnegative random variables ϵ n we investigate the pertaining random sets A ( Z n , ϵ n ) of all ϵ n -approximating minimizers of Z n . It is shown that, if the finite dimensional distributions of the Z n converge to some Z and if the ϵ n converge in probability to some constant c , then the A ( Z n , ϵ n ) converge in distribution to A ( Z , c ) in the hyperspace of Vietoris. As a simple corollary we obtain an extension of several argmin-theorems in the literature. In particular,...

Nonconventional limit theorems in averaging

Yuri Kifer (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider “nonconventional” averaging setup in the form d X ε ( t ) d t = ε B ( X ε ( t ) , 𝛯 ( q 1 ( t ) ) , 𝛯 ( q 2 ( t ) ) , ... , 𝛯 ( q ( t ) ) ) where 𝛯 ( t ) , t 0 is either a stochastic process or a dynamical system with sufficiently fast mixing while q j ( t ) = α j t , α 1 l t ; α 2 l t ; l t ; α k and q j , j = k + 1 , ... , grow faster than linearly. We show that the properly normalized error term in the “nonconventional” averaging principle is asymptotically Gaussian.

Density estimation via best L 2 -approximation on classes of step functions

Dietmar Ferger, John Venz (2017)

Kybernetika

Similarity:

We establish consistent estimators of jump positions and jump altitudes of a multi-level step function that is the best L 2 -approximation of a probability density function f . If f itself is a step-function the number of jumps may be unknown.

Quasi-diffusion solution of a stochastic differential equation

Agnieszka Plucińska, Wojciech Szymański (2007)

Applicationes Mathematicae

Similarity:

We consider the stochastic differential equation X t = X + 0 t ( A s + B s X s ) d s + 0 t C s d Y s , where A t , B t , C t are nonrandom continuous functions of t, X₀ is an initial random variable, Y = ( Y t , t 0 ) is a Gaussian process and X₀, Y are independent. We give the form of the solution ( X t ) to (0.1) and then basing on the results of Plucińska [Teor. Veroyatnost. i Primenen. 25 (1980)] we prove that ( X t ) is a quasi-diffusion proces.

On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes

Nicolas Fournier (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study a one-dimensional stochastic differential equation driven by a stable Lévy process of order α with drift and diffusion coefficients b , σ . When α ( 1 , 2 ) , we investigate pathwise uniqueness for this equation. When α ( 0 , 1 ) , we study another stochastic differential equation, which is equivalent in law, but for which pathwise uniqueness holds under much weaker conditions. We obtain various results, depending on whether α ( 0 , 1 ) or α ( 1 , 2 ) and on whether the driving stable process is symmetric or not. Our...

G-tridiagonal majorization on 𝐌 n , m

Ahmad Mohammadhasani, Yamin Sayyari, Mahdi Sabzvari (2021)

Communications in Mathematics

Similarity:

For X , Y 𝐌 n , m , it is said that X is majorized by Y (and it is denoted by X g t Y ) if there exists a tridiagonal g-doubly stochastic matrix A such that X = A Y . In this paper, the linear preservers and strong linear preservers of g t are characterized on 𝐌 n , m .

On linear preservers of two-sided gut-majorization on 𝐌 n , m

Asma Ilkhanizadeh Manesh, Ahmad Mohammadhasani (2018)

Czechoslovak Mathematical Journal

Similarity:

For X , Y 𝐌 n , m it is said that X is gut-majorized by Y , and we write X gut Y , if there exists an n -by- n upper triangular g-row stochastic matrix R such that X = R Y . Define the relation gut as follows. X gut Y if X is gut-majorized by Y and Y is gut-majorized by X . The (strong) linear preservers of gut on n and strong linear preservers of this relation on 𝐌 n , m have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of gut on n and 𝐌 n , m .

Row Hadamard majorization on 𝐌 m , n

Abbas Askarizadeh, Ali Armandnejad (2021)

Czechoslovak Mathematical Journal

Similarity:

An m × n matrix R with nonnegative entries is called row stochastic if the sum of entries on every row of R is 1. Let 𝐌 m , n be the set of all m × n real matrices. For A , B 𝐌 m , n , we say that A is row Hadamard majorized by B (denoted by A R H B ) if there exists an m × n row stochastic matrix R such that A = R B , where X Y is the Hadamard product (entrywise product) of matrices X , Y 𝐌 m , n . In this paper, we consider the concept of row Hadamard majorization as a relation on 𝐌 m , n and characterize the structure of all linear operators T : 𝐌 m , n 𝐌 m , n preserving...

On the combinatorial structure of 0 / 1 -matrices representing nonobtuse simplices

Jan Brandts, Abdullah Cihangir (2019)

Applications of Mathematics

Similarity:

A 0 / 1 -simplex is the convex hull of n + 1 affinely independent vertices of the unit n -cube I n . It is nonobtuse if none of its dihedral angles is obtuse, and acute if additionally none of them is right. Acute 0 / 1 -simplices in I n can be represented by 0 / 1 -matrices P of size n × n whose Gramians G = P P have an inverse that is strictly diagonally dominant, with negative off-diagonal entries. In this paper, we will prove that the positive part D of the transposed inverse P - of P is doubly stochastic and has the...

On row-sum majorization

Farzaneh Akbarzadeh, Ali Armandnejad (2019)

Czechoslovak Mathematical Journal

Similarity:

Let 𝕄 n , m be the set of all n × m real or complex matrices. For A , B 𝕄 n , m , we say that A is row-sum majorized by B (written as A rs B ) if R ( A ) R ( B ) , where R ( A ) is the row sum vector of A and is the classical majorization on n . In the present paper, the structure of all linear operators T : 𝕄 n , m 𝕄 n , m preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on n and then find the linear preservers of row-sum majorization of these relations on 𝕄 n , m . ...

Initial measures for the stochastic heat equation

Daniel Conus, Mathew Joseph, Davar Khoshnevisan, Shang-Yuan Shiu (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a family of nonlinear stochastic heat equations of the form t u = u + σ ( u ) W ˙ , where W ˙ denotes space–time white noise, the generator of a symmetric Lévy process on 𝐑 , and σ is Lipschitz continuous and zero at 0. We show that this stochastic PDE has a random-field solution for every finite initial measure u 0 . Tight a priori bounds on the moments of the solution are also obtained. In the particular case that f = c f ' ' for some c g t ; 0 , we prove that if u 0 is a finite measure of compact support, then the...

Estimating composite functions by model selection

Yannick Baraud, Lucien Birgé (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider the problem of estimating a function s on [ - 1 , 1 ] k for large values of k by looking for some best approximation of s by composite functions of the form g u . Our solution is based on model selection and leads to a very general approach to solve this problem with respect to many different types of functions g , u and statistical frameworks. In particular, we handle the problems of approximating s by additive functions, single and multiple index models, artificial neural networks, mixtures...

An integral operator on the classes 𝒮 * ( α ) and 𝒞𝒱ℋ ( β )

Nicoleta Ularu, Nicoleta Breaz (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The purpose of this paper is to study some properties related to convexity order and coefficients estimation for a general integral operator. We find the convexity order for this operator, using the analytic functions from the class of starlike functions of order α and from the class 𝒞𝒱ℋ ( β ) and also we estimate the first two coefficients for functions obtained by this operator applied on the class 𝒞𝒱ℋ ( β ) .

Theoretical analysis for 1 - 2 minimization with partial support information

Haifeng Li, Leiyan Guo (2025)

Applications of Mathematics

Similarity:

We investigate the recovery of k -sparse signals using the 1 - 2 minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume k -sparse signals 𝐱 with the prior support T which is composed of g true indices and b wrong...

On the distribution of ( k , r ) -integers in Piatetski-Shapiro sequences

Teerapat Srichan (2021)

Czechoslovak Mathematical Journal

Similarity:

A natural number n is said to be a ( k , r ) -integer if n = a k b , where k > r > 1 and b is not divisible by the r th power of any prime. We study the distribution of such ( k , r ) -integers in the Piatetski-Shapiro sequence { n c } with c > 1 . As a corollary, we also obtain similar results for semi- r -free integers.

C * -points vs P -points and P -points

Jorge Martinez, Warren Wm. McGovern (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space...

On orthogonal series estimation of bounded regression functions

Waldemar Popiński (2001)

Applicationes Mathematicae

Similarity:

The problem of nonparametric estimation of a bounded regression function f L ² ( [ a , b ] d ) , [a,b] ⊂ ℝ, d ≥ 1, using an orthonormal system of functions e k , k=1,2,..., is considered in the case when the observations follow the model Y i = f ( X i ) + η i , i=1,...,n, where X i and η i are i.i.d. copies of independent random variables X and η, respectively, the distribution of X has density ϱ, and η has mean zero and finite variance. The estimators are constructed by proper truncation of the function f ̂ ( x ) = k = 1 N ( n ) c ̂ k e k ( x ) , where the coefficients c ̂ , . . . , c ̂ N ( n ) ...