Defects and transformations of quasi-copulas

Michal Dibala; Susanne Saminger-Platz; Radko Mesiar; Erich Peter Klement

Kybernetika (2016)

  • Volume: 52, Issue: 6, page 848-865
  • ISSN: 0023-5954

Abstract

top
Six different functions measuring the defect of a quasi-copula, i. e., how far away it is from a copula, are discussed. This is done by means of extremal non-positive volumes of specific rectangles (in a way that a zero defect characterizes copulas). Based on these defect functions, six transformations of quasi-copulas are investigated which give rise to six different partitions of the set of all quasi-copulas. For each of these partitions, each equivalence class contains exactly one copula being a fixed point of the transformation under consideration. Finally, an application to the construction of so-called imprecise copulas is given.

How to cite

top

Dibala, Michal, et al. "Defects and transformations of quasi-copulas." Kybernetika 52.6 (2016): 848-865. <http://eudml.org/doc/287877>.

@article{Dibala2016,
abstract = {Six different functions measuring the defect of a quasi-copula, i. e., how far away it is from a copula, are discussed. This is done by means of extremal non-positive volumes of specific rectangles (in a way that a zero defect characterizes copulas). Based on these defect functions, six transformations of quasi-copulas are investigated which give rise to six different partitions of the set of all quasi-copulas. For each of these partitions, each equivalence class contains exactly one copula being a fixed point of the transformation under consideration. Finally, an application to the construction of so-called imprecise copulas is given.},
author = {Dibala, Michal, Saminger-Platz, Susanne, Mesiar, Radko, Klement, Erich Peter},
journal = {Kybernetika},
keywords = {copula; quasi-copula; transformation of quasi-copulas; imprecise copula},
language = {eng},
number = {6},
pages = {848-865},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Defects and transformations of quasi-copulas},
url = {http://eudml.org/doc/287877},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Dibala, Michal
AU - Saminger-Platz, Susanne
AU - Mesiar, Radko
AU - Klement, Erich Peter
TI - Defects and transformations of quasi-copulas
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 6
SP - 848
EP - 865
AB - Six different functions measuring the defect of a quasi-copula, i. e., how far away it is from a copula, are discussed. This is done by means of extremal non-positive volumes of specific rectangles (in a way that a zero defect characterizes copulas). Based on these defect functions, six transformations of quasi-copulas are investigated which give rise to six different partitions of the set of all quasi-copulas. For each of these partitions, each equivalence class contains exactly one copula being a fixed point of the transformation under consideration. Finally, an application to the construction of so-called imprecise copulas is given.
LA - eng
KW - copula; quasi-copula; transformation of quasi-copulas; imprecise copula
UR - http://eudml.org/doc/287877
ER -

References

top
  1. Alsina, C., Frank, M. J., Schweizer, B., 10.1142/9789812774200, World Scientific, Singapore 2006. Zbl1100.39023MR2222258DOI10.1142/9789812774200
  2. Alsina, C., Nelsen, R. B., Schweizer, B., 10.1016/0167-7152(93)90001-y, Statist. Probab. Lett. 17 (1993), 85-89. Zbl0798.60023MR1223530DOI10.1016/0167-7152(93)90001-y
  3. Alvoni, E., Papini, P. L., Spizzichino, F., 10.1016/j.fss.2008.03.025, Fuzzy Sets and Systems 160 (2009), 334-343. Zbl1175.62045MR2473107DOI10.1016/j.fss.2008.03.025
  4. Birkhoff, G., Lattice Theory., American Mathematical Society, Providence 1973. Zbl0537.06001MR0227053
  5. Clifford, A. H., 10.2307/2372706, Amer. J. Math. 76 (1954), 631-646. MR0062118DOI10.2307/2372706
  6. Baets, B. De, 10.1007/978-3-642-11960-6_6, In: Integrated Uncertainty Management and Applications. Selected Papers Based on the Presentations at the 2010 International Symposium on Integrated Uncertainty Managment and Applications (IUM 2010) (V.-N. Huynh, Y. Nakamori, J. Lawry, and M. Inuiguchi, eds.), Ishikawa 2010, p. 55. Springer, Berlin 2010. DOI10.1007/978-3-642-11960-6_6
  7. Baets, B. De, Meyer, H. De, D{í}az, S., 10.1016/j.fss.2008.04.001, Fuzzy Sets and Systems 160 (2009), 733-751. Zbl1175.62046MR2493272DOI10.1016/j.fss.2008.04.001
  8. Baets, B. De, Janssens, S., Meyer, H. De, 10.1016/j.ijar.2008.03.006, Internat. J. Approx. Reason. 50 (2009), 104-116. Zbl1191.68706MR2519040DOI10.1016/j.ijar.2008.03.006
  9. Schuymer, B. De, Meyer, H. De, Baets, B. De, 10.1016/j.jmva.2004.10.011, J. Multivariate Anal. 96 (2005), 352-373. Zbl1087.60018MR2204983DOI10.1016/j.jmva.2004.10.011
  10. D{í}az, S., Montes, S., Baets, B. De, 10.1109/tfuzz.2006.880004, IEEE Trans. Fuzzy Systems 15 (2007), 275-286. DOI10.1109/tfuzz.2006.880004
  11. Dolati, A., Mohseni, S., Úbeda-Flores, M., 10.1016/j.ins.2013.09.023, Inform. Sci. 257 (2014), 176-182. Zbl1321.62053MR3131786DOI10.1016/j.ins.2013.09.023
  12. Durante, F., Sarkoci, P., Sempi, C., 10.1016/j.jmaa.2008.11.064, J. Math. Anal. Appl. 352 (2009), 914-921. Zbl1160.60307MR2501937DOI10.1016/j.jmaa.2008.11.064
  13. Durante, F., Sempi, C., 10.1155/ijmms.2005.645 Zbl1078.62055DOI10.1155/ijmms.2005.645
  14. Durante, F., Sempi, C., 10.1201/b18674, CRC Press, Boca Raton 2015. MR3443023DOI10.1201/b18674
  15. Fuchs, S., Schmidt, K. D., 10.14736/kyb-2014-1-0109, Kybernetika 50 (2014), 109-125. MR3195007DOI10.14736/kyb-2014-1-0109
  16. Genest, C., Quesada-Molina, J. J., Rodríguez-Lallena, J. A., Sempi, C., 10.1006/jmva.1998.1809, J. Multivariate Anal. 69 (1999), 193-205. Zbl0935.62059MR1703371DOI10.1006/jmva.1998.1809
  17. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E., 10.1017/cbo9781139644150, Cambridge University Press, Cambridge 2009. Zbl1206.68299MR2538324DOI10.1017/cbo9781139644150
  18. Hájek, P., Mesiar, R., 10.1007/s00500-008-0286-z, Soft Computing 12 (2008), 1239-1243. Zbl1152.03018DOI10.1007/s00500-008-0286-z
  19. Janssens, S., Baets, B. De, Meyer, H. De, 10.1016/j.fss.2004.03.015, Fuzzy Sets and Systems 148 (2004), 263-278. MR2100199DOI10.1016/j.fss.2004.03.015
  20. Kalická, J., 10.1016/j.fss.2008.06.017, Fuzzy Sets and Systems 160 (2009), 726-732. Zbl1175.62047MR2493271DOI10.1016/j.fss.2008.06.017
  21. Klement, E. P., Mesiar, R., Pap, E., 10.1007/978-94-015-9540-7, Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096DOI10.1007/978-94-015-9540-7
  22. Klement, E. P., Mesiar, R., Pap, E., Invariant copulas., Kybernetika 38 (2002), 275-285. Zbl1264.62045MR1944309
  23. Klement, E. P., Mesiar, R., Pap, E., Transformations of copulas., Kybernetika 41 (2005), 425-436. Zbl1243.62019MR2180355
  24. Ling, C. M., Representation of associative functions., Publ. Math. Debrecen 12 (1965), 189-212. Zbl0137.26401MR0190575
  25. Montes, I., Miranda, E., Montes, S., 10.1016/j.ejor.2013.09.013, European J. Oper. Res. 2342 (2014), 209-220. Zbl1305.91106MR3141610DOI10.1016/j.ejor.2013.09.013
  26. Montes, I., Miranda, E., Pelessoni, R., Vicig, P., 10.1016/j.fss.2014.10.007, Fuzzy Sets and Systems 278 (2015), 48-66. MR3383206DOI10.1016/j.fss.2014.10.007
  27. Nelsen, R. B., 10.1007/0-387-28678-0, Springer, New York 2006. MR2197664DOI10.1007/0-387-28678-0
  28. Nelsen, R. B., Quesada-Molina, J. J., Rodríguez-Lallena, J. A., Úbeda-Flores, M., 10.1007/978-94-017-0061-0_20, In: Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, edis.), Kluwer Academic Publishers, Dordrecht 2002, pp. 187-194. Zbl1135.62339MR2058992DOI10.1007/978-94-017-0061-0_20
  29. Nelsen, R. B., Úbeda-Flores, M., 10.1016/j.crma.2005.09.026, Comptes Rendus Mathematique 341 (2005), 583-586. Zbl1076.62053MR2182439DOI10.1016/j.crma.2005.09.026
  30. Pelessoni, R., Vicig, P., Montes, I., Miranda, E., Imprecise copulas and bivariate stochastic orders., In: Proc. EUROFUSE 2013, Oviedo 2013, pp. 217-224. 
  31. Sainio, E., Turunen, E., Mesiar, R., 10.1016/j.fss.2007.09.018, Fuzzy Sets and Systems 159 (2008), 491-499. Zbl1176.03013MR2388105DOI10.1016/j.fss.2007.09.018
  32. Schweizer, B., Sklar, A., Associative functions and abstract semigroups., Publ. Math. Debrecen 10 (1963), 69-81. MR0170967
  33. Schweizer, B., Sklar, A., Probabilistic Metric Spaces., North-Holland, New York 1983. Zbl0546.60010MR0790314
  34. Sklar, A., Fonctions de répartition à n dimensions et leurs marges., Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. MR0125600
  35. Sklar, A., Random variables, joint distribution functions, and copulas., Kybernetika 9 (1973), 449-460. Zbl0292.60036MR0345164
  36. Walley, P., Statistical Reasoning with Imprecise Probabilities., Chapman and Hall, London 1991. Zbl0732.62004MR1145491

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.