Spaces with property
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 1, page 131-135
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topXuan, Wei-Feng, and Shi, Wei-Xue. "Spaces with property $(DC(\omega _1))$." Commentationes Mathematicae Universitatis Carolinae 58.1 (2017): 131-135. <http://eudml.org/doc/287888>.
@article{Xuan2017,
abstract = {We prove that if $X$ is a first countable space with property $(DC(\omega _1))$ and with a $G_\delta $-diagonal then the cardinality of $X$ is at most $\mathfrak \{c\}$. We also show that if $X$ is a first countable, DCCC, normal space then the extent of $X$ is at most $\mathfrak \{c\}$.},
author = {Xuan, Wei-Feng, Shi, Wei-Xue},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$G_\delta $-diagonal; property $(DC(\omega _1))$; cardinal; DCCC},
language = {eng},
number = {1},
pages = {131-135},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Spaces with property $(DC(\omega _1))$},
url = {http://eudml.org/doc/287888},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Xuan, Wei-Feng
AU - Shi, Wei-Xue
TI - Spaces with property $(DC(\omega _1))$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 1
SP - 131
EP - 135
AB - We prove that if $X$ is a first countable space with property $(DC(\omega _1))$ and with a $G_\delta $-diagonal then the cardinality of $X$ is at most $\mathfrak {c}$. We also show that if $X$ is a first countable, DCCC, normal space then the extent of $X$ is at most $\mathfrak {c}$.
LA - eng
KW - $G_\delta $-diagonal; property $(DC(\omega _1))$; cardinal; DCCC
UR - http://eudml.org/doc/287888
ER -
References
top- Aiken L.P., 10.1016/j.topol.2011.06.032, Topology Appl. 158 (2011), no. 13, 1732–1737. Zbl1223.54029MR2812483DOI10.1016/j.topol.2011.06.032
- Arhangel'skii A.V., Buzyakova R.Z., The rank of the diagonal and submetrizability, Comment. Math. Univ. Carolin. 47 (2006), no. 4, 585–597. Zbl1150.54335MR2337413
- Arhangel'skii A.V., Burke D.K., 10.1016/j.topol.2005.07.013, Topology Appl. 153 (2006), no. 11, 1917–1929. Zbl1117.54004MR2227036DOI10.1016/j.topol.2005.07.013
- Buzyakova R.Z., 10.1016/j.topol.2005.06.004, Topology Appl. 153 (2006), no. 11, 1696–1698. MR2227022DOI10.1016/j.topol.2005.06.004
- Engelking R., General Topology, Helderman, Berlin, 1989. Zbl0684.54001MR1039321
- Ginsburg J., Woods R.G., 10.1090/S0002-9939-1977-0461407-7, Proc. Amer. Math. Soc. 64 (1977), no. 2, 357–360. Zbl0398.54002MR0461407DOI10.1090/S0002-9939-1977-0461407-7
- Ikenaga S., Topological concept between Lindelöf and pseudo-Lindelöf, Research Reports of Nara National College of Technology 26 (1990), 103–108.
- Kunen K., Vaughan J., Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984. Zbl0674.54001MR0776619
- Matveev M., A survey on star covering properties, Topology Atlas, 1998.
- Porter J.R., Woods R.G., Feebly compact spaces, Martin's axiom, and “diamond”, Topology Proc. 9 (1984), 105–121. Zbl0565.54006MR0781555
- Shakhmatov D.B., No upper bound for cardinalities of Tychonoff c.c.c. spaces with a -diagonal exists, Comment. Math. Univ. Carolin. 25 (1984), no. 4, 731–746. MR0782022
- Uspenskij V.V., A large -discrete Fréchet space having the Souslin property, Comment. Math. Univ. Carolin. 25 (1984), no. 2, 257–260. MR0768812
- Xuan W.F., Shi W.X., 10.1017/S0004972714000318, Bull. Aust. Math. Soc. 90 (2014), no. 3, 521–524. Zbl1305.54036MR3270766DOI10.1017/S0004972714000318
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.