Variational principles and symmetries on fibered multisymplectic manifolds
Jordi Gaset; Pedro D. Prieto-Martínez; Narciso Román-Roy
Communications in Mathematics (2016)
- Volume: 24, Issue: 2, page 137-152
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topGaset, Jordi, Prieto-Martínez, Pedro D., and Román-Roy, Narciso. "Variational principles and symmetries on fibered multisymplectic manifolds." Communications in Mathematics 24.2 (2016): 137-152. <http://eudml.org/doc/287890>.
@article{Gaset2016,
abstract = {The standard techniques of variational calculus are geometrically stated in the ambient of fiber bundles endowed with a (pre)multisymplectic structure. Then, for the corresponding variational equations, conserved quantities (or, what is equivalent, conservation laws), symmetries, Cartan (Noether) symmetries, gauge symmetries and different versions of Noether's theorem are studied in this ambient. In this way, this constitutes a general geometric framework for all these topics that includes, as special cases, first and higher order field theories and (non-autonomous) mechanics.},
author = {Gaset, Jordi, Prieto-Martínez, Pedro D., Román-Roy, Narciso},
journal = {Communications in Mathematics},
keywords = {Variational principles; Symmetries; Conserved quantities; Noether theorem; Fiber bundles; Multisymplectic manifolds; variational principles; symmetries; conserved quantities; Noether theorem; fiber bundles; multisymplectic manifolds.},
language = {eng},
number = {2},
pages = {137-152},
publisher = {University of Ostrava},
title = {Variational principles and symmetries on fibered multisymplectic manifolds},
url = {http://eudml.org/doc/287890},
volume = {24},
year = {2016},
}
TY - JOUR
AU - Gaset, Jordi
AU - Prieto-Martínez, Pedro D.
AU - Román-Roy, Narciso
TI - Variational principles and symmetries on fibered multisymplectic manifolds
JO - Communications in Mathematics
PY - 2016
PB - University of Ostrava
VL - 24
IS - 2
SP - 137
EP - 152
AB - The standard techniques of variational calculus are geometrically stated in the ambient of fiber bundles endowed with a (pre)multisymplectic structure. Then, for the corresponding variational equations, conserved quantities (or, what is equivalent, conservation laws), symmetries, Cartan (Noether) symmetries, gauge symmetries and different versions of Noether's theorem are studied in this ambient. In this way, this constitutes a general geometric framework for all these topics that includes, as special cases, first and higher order field theories and (non-autonomous) mechanics.
LA - eng
KW - Variational principles; Symmetries; Conserved quantities; Noether theorem; Fiber bundles; Multisymplectic manifolds; variational principles; symmetries; conserved quantities; Noether theorem; fiber bundles; multisymplectic manifolds.
UR - http://eudml.org/doc/287890
ER -
References
top- Aldaya, V., Azcarraga, J. A. de, 10.1063/1.523904, J. Math. Phys., 19, 9, 1978, 1869-1875, (1978) MR0496116DOI10.1063/1.523904
- Aldaya, V., Azcarraga, J.A. de, Higher order Hamiltonian formalism in Field Theory, J. Phys. A, 13, 8, 1980, 2545-2551, (1980) Zbl0467.58013MR0582906
- Arnold, V. I., Mathematical methods of classical mechanics, 60, 1989, Springer-Verlag, New York, (1989) Zbl0692.70003MR0997295
- Dedecker, P., On the generalization of symplectic geometry to multiple integrals in the calculus of variations, Differential Geometrical Methods in Mathematical Physics, 570, 1977, 395-456, Springer, Berlin, (1977) Zbl0352.49018MR0458478
- León, M. de, Marín-Solano, J., Marrero, J. C., Muñoz-Lecanda, M. C., Román-Roy, N., 10.1142/S0219887805000880, Int. J. Geom. Meth. Mod. Phys., 2, 2005, 839-871, (2005) Zbl1156.70317MR2177288DOI10.1142/S0219887805000880
- León, M. de, Diego, D. Martín de, 10.1007/BF02302383, Int. J. Theor. Phys., 35, 5, 1996, 975-1011, (1996) MR1386775DOI10.1007/BF02302383
- León, M. de, Diego, D. Martín de, Santamaría-Merino, A., 10.1142/S0219887804000290, Int. J. Geom. Meths. Mod. Phys., 1, 5, 2004, 651-710, (2004) MR2095443DOI10.1142/S0219887804000290
- Echeverría-Enríquez, A., León, M. De, Muñoz-Lecanda, M. C., Román-Roy, N., 10.1063/1.2801875, J. Math. Phys., 48, 11, 2007, 112901. (2007) Zbl1152.81420MR2370237DOI10.1063/1.2801875
- Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N., 10.1002/prop.2190440304, Forts. Phys., 44, 1996, 235-280, (1996) Zbl0964.58015MR1400307DOI10.1002/prop.2190440304
- Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N., 10.1063/1.532525, J. Math. Phys., 39, 9, 1998, 4578-4603, (1998) Zbl0927.37054MR1643297DOI10.1063/1.532525
- Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N., 10.1088/0305-4470/32/48/309, J. Phys. A: Math. Gen., 32, 1999, 8461-8484, (1999) Zbl0982.70019MR1733703DOI10.1088/0305-4470/32/48/309
- Ferraris, M., Francaviglia, M., Applications of the Poincaré-Cartan form in higher order field theories, Differential Geometry and Its Applications (Brno, 1986), Math. Appl.(East European Ser.), 27, 1987, 31-52, (1987) Zbl0659.58010MR0923342
- García, P. L., The Poincaré-Cartan invariant in the calculus of variations, Symp. Math., 14, 1973, 219-246, (1973) MR0406246
- García, P. L., Muñoz, J., On the geometrical structure of higher order variational calculus, Atti. Accad. Sci. Torino Cl. Sci. Fis. Math. Natur., 117, 1983, 127-147, (1983) Zbl0569.58008MR0773483
- Giachetta, G., Mangiarotti, L., Sardanashvily, G., New Lagrangian and Hamiltonian methods in field theory, 1997, World Scientific Publishing Co., Inc., River Edge, NJ, (1997) Zbl0913.58001MR2001723
- Goldschmidt, H., Sternberg, S., 10.5802/aif.451, Ann. Inst. Fourier Grenoble, 23, 1, 1973, 203-267, (1973) Zbl0243.49011MR0341531DOI10.5802/aif.451
- Hélein, F., J, J. Kouneiher, Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage--Dedecker versus De Donder--Weyl, Adv. Theor. Math. Phys., 8, 2004, 565-601, (2004) Zbl1115.70017MR2105190
- Kouranbaeva, S., Shkoller, S., 10.1016/S0393-0440(00)00012-7, J. Geom. Phys., 4, 2000, 333-366, (2000) Zbl0987.70020MR1780759DOI10.1016/S0393-0440(00)00012-7
- Krupka, D., Introduction to Global Variational Geometry, 2015, Atlantis Studies in Variational Geometry, Atlantis Press, (2015) Zbl1310.49001MR3290001
- Krupka, D., Štěpánková, O., On the Hamilton form in second order calculus of variations, Procs. Int. Meeting on Geometry and Physics, 1982, 85-101, (1982) MR0760838
- Mangiarotti, L., Sardanashvily, G., Gauge Mechanics, 1998, World Scientific, Singapore, (1998) MR1689375
- Prieto-Martínez, P. D., Román-Roy, N., 10.3934/jgm.2013.5.493, J. Geom. Mech., 5, 4, 2013, 493-510, (2013) Zbl1284.35014MR3180709DOI10.3934/jgm.2013.5.493
- Prieto-Martínez, P.D., Román-Roy, N., Variational principles for multisymplectic second-order classical field theories, Int. J. Geom. Meth. Mod. Phys, 12, 8, 2015, 1560019. (2015) MR3400659
- Sarlet, W., Cantrijn, F., 10.1088/0305-4470/14/2/023, J. Phys. A: Math. Gen., 14, 1981, 479-492, (1981) Zbl0464.58010MR0601885DOI10.1088/0305-4470/14/2/023
- Saunders, D.J., The geometry of jet bundles, London Mathematical Society, Lecture notes series, 142, 1989, Cambridge University Press, Cambridge, New York, (1989) Zbl0665.58002MR0989588
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.