Variational principles and symmetries on fibered multisymplectic manifolds

Jordi Gaset; Pedro D. Prieto-Martínez; Narciso Román-Roy

Communications in Mathematics (2016)

  • Volume: 24, Issue: 2, page 137-152
  • ISSN: 1804-1388

Abstract

top
The standard techniques of variational calculus are geometrically stated in the ambient of fiber bundles endowed with a (pre)multisymplectic structure. Then, for the corresponding variational equations, conserved quantities (or, what is equivalent, conservation laws), symmetries, Cartan (Noether) symmetries, gauge symmetries and different versions of Noether's theorem are studied in this ambient. In this way, this constitutes a general geometric framework for all these topics that includes, as special cases, first and higher order field theories and (non-autonomous) mechanics.

How to cite

top

Gaset, Jordi, Prieto-Martínez, Pedro D., and Román-Roy, Narciso. "Variational principles and symmetries on fibered multisymplectic manifolds." Communications in Mathematics 24.2 (2016): 137-152. <http://eudml.org/doc/287890>.

@article{Gaset2016,
abstract = {The standard techniques of variational calculus are geometrically stated in the ambient of fiber bundles endowed with a (pre)multisymplectic structure. Then, for the corresponding variational equations, conserved quantities (or, what is equivalent, conservation laws), symmetries, Cartan (Noether) symmetries, gauge symmetries and different versions of Noether's theorem are studied in this ambient. In this way, this constitutes a general geometric framework for all these topics that includes, as special cases, first and higher order field theories and (non-autonomous) mechanics.},
author = {Gaset, Jordi, Prieto-Martínez, Pedro D., Román-Roy, Narciso},
journal = {Communications in Mathematics},
keywords = {Variational principles; Symmetries; Conserved quantities; Noether theorem; Fiber bundles; Multisymplectic manifolds; variational principles; symmetries; conserved quantities; Noether theorem; fiber bundles; multisymplectic manifolds.},
language = {eng},
number = {2},
pages = {137-152},
publisher = {University of Ostrava},
title = {Variational principles and symmetries on fibered multisymplectic manifolds},
url = {http://eudml.org/doc/287890},
volume = {24},
year = {2016},
}

TY - JOUR
AU - Gaset, Jordi
AU - Prieto-Martínez, Pedro D.
AU - Román-Roy, Narciso
TI - Variational principles and symmetries on fibered multisymplectic manifolds
JO - Communications in Mathematics
PY - 2016
PB - University of Ostrava
VL - 24
IS - 2
SP - 137
EP - 152
AB - The standard techniques of variational calculus are geometrically stated in the ambient of fiber bundles endowed with a (pre)multisymplectic structure. Then, for the corresponding variational equations, conserved quantities (or, what is equivalent, conservation laws), symmetries, Cartan (Noether) symmetries, gauge symmetries and different versions of Noether's theorem are studied in this ambient. In this way, this constitutes a general geometric framework for all these topics that includes, as special cases, first and higher order field theories and (non-autonomous) mechanics.
LA - eng
KW - Variational principles; Symmetries; Conserved quantities; Noether theorem; Fiber bundles; Multisymplectic manifolds; variational principles; symmetries; conserved quantities; Noether theorem; fiber bundles; multisymplectic manifolds.
UR - http://eudml.org/doc/287890
ER -

References

top
  1. Aldaya, V., Azcarraga, J. A. de, 10.1063/1.523904, J. Math. Phys., 19, 9, 1978, 1869-1875, (1978) MR0496116DOI10.1063/1.523904
  2. Aldaya, V., Azcarraga, J.A. de, Higher order Hamiltonian formalism in Field Theory, J. Phys. A, 13, 8, 1980, 2545-2551, (1980) Zbl0467.58013MR0582906
  3. Arnold, V. I., Mathematical methods of classical mechanics, 60, 1989, Springer-Verlag, New York, (1989) Zbl0692.70003MR0997295
  4. Dedecker, P., On the generalization of symplectic geometry to multiple integrals in the calculus of variations, Differential Geometrical Methods in Mathematical Physics, 570, 1977, 395-456, Springer, Berlin, (1977) Zbl0352.49018MR0458478
  5. León, M. de, Marín-Solano, J., Marrero, J. C., Muñoz-Lecanda, M. C., Román-Roy, N., 10.1142/S0219887805000880, Int. J. Geom. Meth. Mod. Phys., 2, 2005, 839-871, (2005) Zbl1156.70317MR2177288DOI10.1142/S0219887805000880
  6. León, M. de, Diego, D. Martín de, 10.1007/BF02302383, Int. J. Theor. Phys., 35, 5, 1996, 975-1011, (1996) MR1386775DOI10.1007/BF02302383
  7. León, M. de, Diego, D. Martín de, Santamaría-Merino, A., 10.1142/S0219887804000290, Int. J. Geom. Meths. Mod. Phys., 1, 5, 2004, 651-710, (2004) MR2095443DOI10.1142/S0219887804000290
  8. Echeverría-Enríquez, A., León, M. De, Muñoz-Lecanda, M. C., Román-Roy, N., 10.1063/1.2801875, J. Math. Phys., 48, 11, 2007, 112901. (2007) Zbl1152.81420MR2370237DOI10.1063/1.2801875
  9. Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N., 10.1002/prop.2190440304, Forts. Phys., 44, 1996, 235-280, (1996) Zbl0964.58015MR1400307DOI10.1002/prop.2190440304
  10. Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N., 10.1063/1.532525, J. Math. Phys., 39, 9, 1998, 4578-4603, (1998) Zbl0927.37054MR1643297DOI10.1063/1.532525
  11. Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N., 10.1088/0305-4470/32/48/309, J. Phys. A: Math. Gen., 32, 1999, 8461-8484, (1999) Zbl0982.70019MR1733703DOI10.1088/0305-4470/32/48/309
  12. Ferraris, M., Francaviglia, M., Applications of the Poincaré-Cartan form in higher order field theories, Differential Geometry and Its Applications (Brno, 1986), Math. Appl.(East European Ser.), 27, 1987, 31-52, (1987) Zbl0659.58010MR0923342
  13. García, P. L., The Poincaré-Cartan invariant in the calculus of variations, Symp. Math., 14, 1973, 219-246, (1973) MR0406246
  14. García, P. L., Muñoz, J., On the geometrical structure of higher order variational calculus, Atti. Accad. Sci. Torino Cl. Sci. Fis. Math. Natur., 117, 1983, 127-147, (1983) Zbl0569.58008MR0773483
  15. Giachetta, G., Mangiarotti, L., Sardanashvily, G., New Lagrangian and Hamiltonian methods in field theory, 1997, World Scientific Publishing Co., Inc., River Edge, NJ, (1997) Zbl0913.58001MR2001723
  16. Goldschmidt, H., Sternberg, S., 10.5802/aif.451, Ann. Inst. Fourier Grenoble, 23, 1, 1973, 203-267, (1973) Zbl0243.49011MR0341531DOI10.5802/aif.451
  17. Hélein, F., J, J. Kouneiher, Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage--Dedecker versus De Donder--Weyl, Adv. Theor. Math. Phys., 8, 2004, 565-601, (2004) Zbl1115.70017MR2105190
  18. Kouranbaeva, S., Shkoller, S., 10.1016/S0393-0440(00)00012-7, J. Geom. Phys., 4, 2000, 333-366, (2000) Zbl0987.70020MR1780759DOI10.1016/S0393-0440(00)00012-7
  19. Krupka, D., Introduction to Global Variational Geometry, 2015, Atlantis Studies in Variational Geometry, Atlantis Press, (2015) Zbl1310.49001MR3290001
  20. Krupka, D., Štěpánková, O., On the Hamilton form in second order calculus of variations, Procs. Int. Meeting on Geometry and Physics, 1982, 85-101, (1982) MR0760838
  21. Mangiarotti, L., Sardanashvily, G., Gauge Mechanics, 1998, World Scientific, Singapore, (1998) MR1689375
  22. Prieto-Martínez, P. D., Román-Roy, N., 10.3934/jgm.2013.5.493, J. Geom. Mech., 5, 4, 2013, 493-510, (2013) Zbl1284.35014MR3180709DOI10.3934/jgm.2013.5.493
  23. Prieto-Martínez, P.D., Román-Roy, N., Variational principles for multisymplectic second-order classical field theories, Int. J. Geom. Meth. Mod. Phys, 12, 8, 2015, 1560019. (2015) MR3400659
  24. Sarlet, W., Cantrijn, F., 10.1088/0305-4470/14/2/023, J. Phys. A: Math. Gen., 14, 1981, 479-492, (1981) Zbl0464.58010MR0601885DOI10.1088/0305-4470/14/2/023
  25. Saunders, D.J., The geometry of jet bundles, London Mathematical Society, Lecture notes series, 142, 1989, Cambridge University Press, Cambridge, New York, (1989) Zbl0665.58002MR0989588

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.