Lebesgue points for Sobolev functions on metric spaces.

Juha Kinnunen; Visa Latvala

Revista Matemática Iberoamericana (2002)

  • Volume: 18, Issue: 3, page 685-700
  • ISSN: 0213-2230

Abstract

top
Our main objective is to study the pointwise behaviour of Sobolev functions on a metric measure space. We prove that a Sobolev function has Lebesgue points outside a set of capacity zero if the measure is doubling. This result seems to be new even for the weighted Sobolev spaces on Euclidean spaces. The crucial ingredient of our argument is a maximal function related to discrete convolution approximations. In particular, we do not use the Besicovitch covering theorem, extension theorems or representation formulas for Sobolev functions.

How to cite

top

Kinnunen, Juha, and Latvala, Visa. "Lebesgue points for Sobolev functions on metric spaces.." Revista Matemática Iberoamericana 18.3 (2002): 685-700. <http://eudml.org/doc/39699>.

@article{Kinnunen2002,
abstract = {Our main objective is to study the pointwise behaviour of Sobolev functions on a metric measure space. We prove that a Sobolev function has Lebesgue points outside a set of capacity zero if the measure is doubling. This result seems to be new even for the weighted Sobolev spaces on Euclidean spaces. The crucial ingredient of our argument is a maximal function related to discrete convolution approximations. In particular, we do not use the Besicovitch covering theorem, extension theorems or representation formulas for Sobolev functions.},
author = {Kinnunen, Juha, Latvala, Visa},
journal = {Revista Matemática Iberoamericana},
keywords = {Espacios de funciones lineales; Espacios de Sobolev; Espacios métricos; Sobolev spaces; maximal functions; capacity},
language = {eng},
number = {3},
pages = {685-700},
title = {Lebesgue points for Sobolev functions on metric spaces.},
url = {http://eudml.org/doc/39699},
volume = {18},
year = {2002},
}

TY - JOUR
AU - Kinnunen, Juha
AU - Latvala, Visa
TI - Lebesgue points for Sobolev functions on metric spaces.
JO - Revista Matemática Iberoamericana
PY - 2002
VL - 18
IS - 3
SP - 685
EP - 700
AB - Our main objective is to study the pointwise behaviour of Sobolev functions on a metric measure space. We prove that a Sobolev function has Lebesgue points outside a set of capacity zero if the measure is doubling. This result seems to be new even for the weighted Sobolev spaces on Euclidean spaces. The crucial ingredient of our argument is a maximal function related to discrete convolution approximations. In particular, we do not use the Besicovitch covering theorem, extension theorems or representation formulas for Sobolev functions.
LA - eng
KW - Espacios de funciones lineales; Espacios de Sobolev; Espacios métricos; Sobolev spaces; maximal functions; capacity
UR - http://eudml.org/doc/39699
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.