Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point

Mouataz Billah MESMOULI; Abdelouaheb Ardjouni; Ahcene Djoudi

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 2, page 129-142
  • ISSN: 0231-9721

Abstract

top
In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay x ' t = - a t h x t + d d t Q t , x t - τ t + G t , x t , x t - τ t . The stability of the zero solution of this eqution provided that h 0 = Q t , 0 = G t , 0 , 0 = 0 . The Caratheodory condition is used for the functions Q and G .

How to cite

top

MESMOULI, Mouataz Billah, Ardjouni, Abdelouaheb, and Djoudi, Ahcene. "Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.2 (2016): 129-142. <http://eudml.org/doc/287913>.

@article{MESMOULI2016,
abstract = {In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay \[ x^\{\prime \}\left( t\right) =-a\left( t\right) h\left( x\left( t\right) \right) +\frac\{d\}\{dt\}Q\left( t,x\left( t-\tau \left( t\right) \right) \right) +G\left( t,x\left( t\right) ,x\left( t-\tau \left( t\right) \right) \right) . \] The stability of the zero solution of this eqution provided that $h\left(0\right) =Q\left( t,0\right) =G\left( t,0,0\right) =0$. The Caratheodory condition is used for the functions $Q$ and $G$.},
author = {MESMOULI, Mouataz Billah, Ardjouni, Abdelouaheb, Djoudi, Ahcene},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Fixed point; stability; delay; stability; nonlinear neutral equation; large contraction mapping; integral equation; Krasnoselskii-Burton's theorem; large contraction; neutral differential equation; integral equation; periodic solution; non-negative solution},
language = {eng},
number = {2},
pages = {129-142},
publisher = {Palacký University Olomouc},
title = {Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point},
url = {http://eudml.org/doc/287913},
volume = {55},
year = {2016},
}

TY - JOUR
AU - MESMOULI, Mouataz Billah
AU - Ardjouni, Abdelouaheb
AU - Djoudi, Ahcene
TI - Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 2
SP - 129
EP - 142
AB - In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay \[ x^{\prime }\left( t\right) =-a\left( t\right) h\left( x\left( t\right) \right) +\frac{d}{dt}Q\left( t,x\left( t-\tau \left( t\right) \right) \right) +G\left( t,x\left( t\right) ,x\left( t-\tau \left( t\right) \right) \right) . \] The stability of the zero solution of this eqution provided that $h\left(0\right) =Q\left( t,0\right) =G\left( t,0,0\right) =0$. The Caratheodory condition is used for the functions $Q$ and $G$.
LA - eng
KW - Fixed point; stability; delay; stability; nonlinear neutral equation; large contraction mapping; integral equation; Krasnoselskii-Burton's theorem; large contraction; neutral differential equation; integral equation; periodic solution; non-negative solution
UR - http://eudml.org/doc/287913
ER -

References

top
  1. Adıvar, M., Islam, M. N., Raffoul, Y. N., Separate contraction and existence of periodic solution in totally nonlinear delay differential equations, . Hacettepe Journal of Mathematics and Statistics, 41, 1 (2012), 1–13. (2012) MR2976906
  2. Ardjouni, A., Djoudi, A., 10.1016/j.na.2010.10.050, . Nonlin. Anal., T.M.A., 74, 6 (2011), 2062–2070. (2011) Zbl1216.34069MR2781737DOI10.1016/j.na.2010.10.050
  3. Ardjouni, A., Djoudi, A., 10.7494/OpMath.2012.32.1.5, . Opuscula Mathematica, 32, 1 (2012), 5–19. (2012) MR2852465DOI10.7494/OpMath.2012.32.1.5
  4. Ardjouni, A., Derrardjia, I., Djoudi, A., Stability in totally nonlinear neutral differential equations with variable delay, . Acta Math. Univ. Comenianae, 83, 1 (2014), 119–134. (2014) Zbl1324.34142MR3178164
  5. Burton, T. A., 10.1090/S0002-9939-96-03533-2, . Proc. Amer. Math. Soc., 124, 8 (1996), 2383–2390. (1996) Zbl0873.45003MR1346965DOI10.1090/S0002-9939-96-03533-2
  6. Burton, T. A., Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem, . Nonlinear Stud., 9 (2002), 181–190. (2002) MR1898587
  7. Burton, T. A., Stability by Fixed Point Theory for Functional Differential Equations, . Dover Publications, New York, 2006. (2006) Zbl1160.34001MR2281958
  8. Burton, T. A., Liapunov functionals, fixed points, and stability by Krasnoselskii’s theorem, . Nonlinear Stud., 9 (2001), 181–190. (2001) MR1898587
  9. Burton, T. A., Stability by fixed point theory or Liapunov’s theory: A comparison, . Fixed Point Theory, 4 (2003), 15–32. (2003) MR2031819
  10. Burton, T. A., 10.1090/S0002-9939-04-07497-0, . Proc. Amer. Math. Soc., 132 (2004), 3679–3687. (2004) Zbl1050.34110MR2084091DOI10.1090/S0002-9939-04-07497-0
  11. Burton, T. A., Kirk, C., 10.1002/mana.19981890103, . Math. Nachr., 189 (1998), 23–31. (1998) MR1492921DOI10.1002/mana.19981890103
  12. Burton, T. A., Furumochi, T., 10.1016/S0362-546X(01)00111-0, . Nonlinear Anal., 49 (2002), 445–454. (2002) Zbl1015.34046MR1886230DOI10.1016/S0362-546X(01)00111-0
  13. Burton, T. A., Furumochi, T., A note on stability by Schauder’s theorem, . Funkcial. Ekvac., 44 (2001), 73–82. (2001) Zbl1158.34329MR1847837
  14. Burton, T. A., Furumochi, T., Fixed points and problems in stability theory, . Dynam. Systems Appl., 10 (2001), 89–116. (2001) Zbl1021.34042MR1844329
  15. Burton, T. A., Furumochi, T., 10.1016/S0362-546X(01)00111-0, . Nonlinear Anal., 49 (2002), 445–454. (2002) Zbl1015.34046MR1886230DOI10.1016/S0362-546X(01)00111-0
  16. Burton, T. A., Furumochi, T., Asymptotic behavior of solutions of functional differential equations by fixed point theorems, . Dynam. Systems Appl., 11 (2002), 499–519. (2002) Zbl1044.34033MR1946140
  17. Deham, H., Djoudi, A., Periodic solutions for nonlinear differential equation with functional delay, . Georgian Math. J., 15, 4 (2008), 635–642. (2008) Zbl1171.47061MR2494962
  18. Deham, H., Djoudi, A., Existence of periodic solutions for neutral nonlinear differential equations with variable delay, . Electron. J. Differential Equations, 2010, 127 (2010), 1–8. (2010) Zbl1203.34110
  19. Djoudi, A., Khemis, R., Fixed point techniques and stability for neutral nonlinear differential equations with unbounded delays, . Georgian Math. J., 13, 1 (2006), 25–34. (2006) Zbl1104.34052MR2242326
  20. Derrardjia, I., Ardjouni, A., Djoudi, A., 10.7494/OpMath.2013.33.2.255, . Opuscula Math., 33, 2 (2013), 255–272. (2013) MR3023531DOI10.7494/OpMath.2013.33.2.255
  21. Dib, Y. M., Maroun, M. R., Raffoul, Y. N., Periodicity and stability in neutral nonlinear differential equations with functional delay, . Electronic Journal of Differential Equations, 2005, 142 (2005), 1–11. (2005) Zbl1097.34049MR2181286
  22. Hatvani, L., Annulus arguments in the stability theory for functional differential equations, . Differential and Integral Equations, 10 (1997), 975–1002. (1997) Zbl0897.34060MR1741762
  23. Hale, J. K., Theory of Functional Differential Equation, . Springer, New York, 1977. (1977) MR0508721
  24. Raffoul, Y. R., 10.1016/j.mcm.2004.10.001, . Mathematical and Computer Modelling, 40 (2004), 691–700. (2004) Zbl1083.34536MR2106161DOI10.1016/j.mcm.2004.10.001
  25. Smart, D. S., Fixed point theorems; Cambridge Tracts in Mathematics, . 66, Cambridge University Press, London–New York, 1974. (1974) MR0467717
  26. Tunc, C., Uniformly stability and boundedness of solutions of second order nonlinear delay differential equations, . Appl. Comput. Math., 10, 3 (2011), 449–462. (2011) Zbl1281.34120MR2893512
  27. Tunc, C., 10.1007/s13370-011-0033-y, . Afr. Mat., 23, 2 (2012), 249–259. (2012) MR2958972DOI10.1007/s13370-011-0033-y
  28. Tunc, C., 10.1007/s13370-012-0126-2, . Afr. Mat., 25, 2 (2014), 417–425. (2014) Zbl1306.34113MR3207028DOI10.1007/s13370-012-0126-2
  29. Zhang, B., 10.1016/j.na.2005.02.081, . Nonlinear Anal., 63 (2005), 233–242. (2005) Zbl1159.34348DOI10.1016/j.na.2005.02.081

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.