Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point
Mouataz Billah MESMOULI; Abdelouaheb Ardjouni; Ahcene Djoudi
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)
- Volume: 55, Issue: 2, page 129-142
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topMESMOULI, Mouataz Billah, Ardjouni, Abdelouaheb, and Djoudi, Ahcene. "Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.2 (2016): 129-142. <http://eudml.org/doc/287913>.
@article{MESMOULI2016,
abstract = {In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay \[ x^\{\prime \}\left( t\right) =-a\left( t\right) h\left( x\left( t\right) \right) +\frac\{d\}\{dt\}Q\left( t,x\left( t-\tau \left( t\right) \right) \right) +G\left( t,x\left( t\right) ,x\left( t-\tau \left( t\right) \right) \right) . \]
The stability of the zero solution of this eqution provided that $h\left(0\right) =Q\left( t,0\right) =G\left( t,0,0\right) =0$. The Caratheodory condition is used for the functions $Q$ and $G$.},
author = {MESMOULI, Mouataz Billah, Ardjouni, Abdelouaheb, Djoudi, Ahcene},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Fixed point; stability; delay; stability; nonlinear neutral equation; large contraction mapping; integral equation; Krasnoselskii-Burton's theorem; large contraction; neutral differential equation; integral equation; periodic solution; non-negative solution},
language = {eng},
number = {2},
pages = {129-142},
publisher = {Palacký University Olomouc},
title = {Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point},
url = {http://eudml.org/doc/287913},
volume = {55},
year = {2016},
}
TY - JOUR
AU - MESMOULI, Mouataz Billah
AU - Ardjouni, Abdelouaheb
AU - Djoudi, Ahcene
TI - Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 2
SP - 129
EP - 142
AB - In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay \[ x^{\prime }\left( t\right) =-a\left( t\right) h\left( x\left( t\right) \right) +\frac{d}{dt}Q\left( t,x\left( t-\tau \left( t\right) \right) \right) +G\left( t,x\left( t\right) ,x\left( t-\tau \left( t\right) \right) \right) . \]
The stability of the zero solution of this eqution provided that $h\left(0\right) =Q\left( t,0\right) =G\left( t,0,0\right) =0$. The Caratheodory condition is used for the functions $Q$ and $G$.
LA - eng
KW - Fixed point; stability; delay; stability; nonlinear neutral equation; large contraction mapping; integral equation; Krasnoselskii-Burton's theorem; large contraction; neutral differential equation; integral equation; periodic solution; non-negative solution
UR - http://eudml.org/doc/287913
ER -
References
top- Adıvar, M., Islam, M. N., Raffoul, Y. N., Separate contraction and existence of periodic solution in totally nonlinear delay differential equations, . Hacettepe Journal of Mathematics and Statistics, 41, 1 (2012), 1–13. (2012) MR2976906
- Ardjouni, A., Djoudi, A., 10.1016/j.na.2010.10.050, . Nonlin. Anal., T.M.A., 74, 6 (2011), 2062–2070. (2011) Zbl1216.34069MR2781737DOI10.1016/j.na.2010.10.050
- Ardjouni, A., Djoudi, A., 10.7494/OpMath.2012.32.1.5, . Opuscula Mathematica, 32, 1 (2012), 5–19. (2012) MR2852465DOI10.7494/OpMath.2012.32.1.5
- Ardjouni, A., Derrardjia, I., Djoudi, A., Stability in totally nonlinear neutral differential equations with variable delay, . Acta Math. Univ. Comenianae, 83, 1 (2014), 119–134. (2014) Zbl1324.34142MR3178164
- Burton, T. A., 10.1090/S0002-9939-96-03533-2, . Proc. Amer. Math. Soc., 124, 8 (1996), 2383–2390. (1996) Zbl0873.45003MR1346965DOI10.1090/S0002-9939-96-03533-2
- Burton, T. A., Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem, . Nonlinear Stud., 9 (2002), 181–190. (2002) MR1898587
- Burton, T. A., Stability by Fixed Point Theory for Functional Differential Equations, . Dover Publications, New York, 2006. (2006) Zbl1160.34001MR2281958
- Burton, T. A., Liapunov functionals, fixed points, and stability by Krasnoselskii’s theorem, . Nonlinear Stud., 9 (2001), 181–190. (2001) MR1898587
- Burton, T. A., Stability by fixed point theory or Liapunov’s theory: A comparison, . Fixed Point Theory, 4 (2003), 15–32. (2003) MR2031819
- Burton, T. A., 10.1090/S0002-9939-04-07497-0, . Proc. Amer. Math. Soc., 132 (2004), 3679–3687. (2004) Zbl1050.34110MR2084091DOI10.1090/S0002-9939-04-07497-0
- Burton, T. A., Kirk, C., 10.1002/mana.19981890103, . Math. Nachr., 189 (1998), 23–31. (1998) MR1492921DOI10.1002/mana.19981890103
- Burton, T. A., Furumochi, T., 10.1016/S0362-546X(01)00111-0, . Nonlinear Anal., 49 (2002), 445–454. (2002) Zbl1015.34046MR1886230DOI10.1016/S0362-546X(01)00111-0
- Burton, T. A., Furumochi, T., A note on stability by Schauder’s theorem, . Funkcial. Ekvac., 44 (2001), 73–82. (2001) Zbl1158.34329MR1847837
- Burton, T. A., Furumochi, T., Fixed points and problems in stability theory, . Dynam. Systems Appl., 10 (2001), 89–116. (2001) Zbl1021.34042MR1844329
- Burton, T. A., Furumochi, T., 10.1016/S0362-546X(01)00111-0, . Nonlinear Anal., 49 (2002), 445–454. (2002) Zbl1015.34046MR1886230DOI10.1016/S0362-546X(01)00111-0
- Burton, T. A., Furumochi, T., Asymptotic behavior of solutions of functional differential equations by fixed point theorems, . Dynam. Systems Appl., 11 (2002), 499–519. (2002) Zbl1044.34033MR1946140
- Deham, H., Djoudi, A., Periodic solutions for nonlinear differential equation with functional delay, . Georgian Math. J., 15, 4 (2008), 635–642. (2008) Zbl1171.47061MR2494962
- Deham, H., Djoudi, A., Existence of periodic solutions for neutral nonlinear differential equations with variable delay, . Electron. J. Differential Equations, 2010, 127 (2010), 1–8. (2010) Zbl1203.34110
- Djoudi, A., Khemis, R., Fixed point techniques and stability for neutral nonlinear differential equations with unbounded delays, . Georgian Math. J., 13, 1 (2006), 25–34. (2006) Zbl1104.34052MR2242326
- Derrardjia, I., Ardjouni, A., Djoudi, A., 10.7494/OpMath.2013.33.2.255, . Opuscula Math., 33, 2 (2013), 255–272. (2013) MR3023531DOI10.7494/OpMath.2013.33.2.255
- Dib, Y. M., Maroun, M. R., Raffoul, Y. N., Periodicity and stability in neutral nonlinear differential equations with functional delay, . Electronic Journal of Differential Equations, 2005, 142 (2005), 1–11. (2005) Zbl1097.34049MR2181286
- Hatvani, L., Annulus arguments in the stability theory for functional differential equations, . Differential and Integral Equations, 10 (1997), 975–1002. (1997) Zbl0897.34060MR1741762
- Hale, J. K., Theory of Functional Differential Equation, . Springer, New York, 1977. (1977) MR0508721
- Raffoul, Y. R., 10.1016/j.mcm.2004.10.001, . Mathematical and Computer Modelling, 40 (2004), 691–700. (2004) Zbl1083.34536MR2106161DOI10.1016/j.mcm.2004.10.001
- Smart, D. S., Fixed point theorems; Cambridge Tracts in Mathematics, . 66, Cambridge University Press, London–New York, 1974. (1974) MR0467717
- Tunc, C., Uniformly stability and boundedness of solutions of second order nonlinear delay differential equations, . Appl. Comput. Math., 10, 3 (2011), 449–462. (2011) Zbl1281.34120MR2893512
- Tunc, C., 10.1007/s13370-011-0033-y, . Afr. Mat., 23, 2 (2012), 249–259. (2012) MR2958972DOI10.1007/s13370-011-0033-y
- Tunc, C., 10.1007/s13370-012-0126-2, . Afr. Mat., 25, 2 (2014), 417–425. (2014) Zbl1306.34113MR3207028DOI10.1007/s13370-012-0126-2
- Zhang, B., 10.1016/j.na.2005.02.081, . Nonlinear Anal., 63 (2005), 233–242. (2005) Zbl1159.34348DOI10.1016/j.na.2005.02.081
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.