On a certain class of arithmetic functions
Mathematica Bohemica (2017)
- Volume: 142, Issue: 1, page 21-25
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topOller-Marcén, Antonio M.. "On a certain class of arithmetic functions." Mathematica Bohemica 142.1 (2017): 21-25. <http://eudml.org/doc/287924>.
@article{Oller2017,
abstract = {A homothetic arithmetic function of ratio $K$ is a function $f\colon \mathbb \{N\}\rightarrow R$ such that $f(Kn)=f(n)$ for every $n\in \mathbb \{N\}$. Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of $f(\mathbb \{N\})$ in terms of the period and the ratio of $f$.},
author = {Oller-Marcén, Antonio M.},
journal = {Mathematica Bohemica},
keywords = {arithmetic function; periodic function; homothetic function},
language = {eng},
number = {1},
pages = {21-25},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a certain class of arithmetic functions},
url = {http://eudml.org/doc/287924},
volume = {142},
year = {2017},
}
TY - JOUR
AU - Oller-Marcén, Antonio M.
TI - On a certain class of arithmetic functions
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 1
SP - 21
EP - 25
AB - A homothetic arithmetic function of ratio $K$ is a function $f\colon \mathbb {N}\rightarrow R$ such that $f(Kn)=f(n)$ for every $n\in \mathbb {N}$. Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of $f(\mathbb {N})$ in terms of the period and the ratio of $f$.
LA - eng
KW - arithmetic function; periodic function; homothetic function
UR - http://eudml.org/doc/287924
ER -
References
top- Apostol, T. M., Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics Springer, New York (1976). (1976) Zbl0335.10001MR0434929
- Cohen, E., 10.2307/2034413, Proc. Am. Math. Soc. 12 (1961), 996. (1961) Zbl0144.28201MR0132717DOI10.2307/2034413
- Ghiyasi, A. K., 10.3103/S0027132208060077, Mosc. Univ. Math. Bull. 63 (2008), 265-269 translation from Vest. Mosk. Univ. Mat. Mekh. 63 2008 44-48. (2008) Zbl1304.11085MR2517021DOI10.3103/S0027132208060077
- Grau, J. M., Oller-Marcén, A. M., 10.4134/BKMS.2014.51.5.1325, Bull. Korean Math. Soc. 51 (2014), 1325-1337. (2014) Zbl1302.11002MR3267232DOI10.4134/BKMS.2014.51.5.1325
- Pilehrood, T. Hessami, Pilehrood, K. Hessami, 10.1134/S0001434608010306, Math. Notes 83 (2008), 281-284 translation from Mat. Zametki83 2008 312-315. (2008) Zbl1157.11031MR2431590DOI10.1134/S0001434608010306
- Ji, Q.-Z., Ji, C.-G., 10.1090/S0002-9939-10-10408-0, Proc. Am. Math. Soc. 138 (2010), 3025-3035. (2010) Zbl1246.11013MR2653927DOI10.1090/S0002-9939-10-10408-0
- Rausch, U., 10.1006/jnth.1994.1011, J. Number Theory 46 (1994), 179-195. (1994) Zbl0795.11033MR1269251DOI10.1006/jnth.1994.1011
- Steuding, J., Dirichlet series associated to periodic arithmetic functions and the zeros of Dirichlet -functions, Analytic and Probabilistic Methods in Number Theory. Proc. Int. Conf., Palanga, Lithuania, 2001 A. Dubickas et al. TEV, Vilnius (2002), 282-296. (2002) Zbl1035.11041MR1964871
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.