On a certain class of arithmetic functions

Antonio M. Oller-Marcén

Mathematica Bohemica (2017)

  • Volume: 142, Issue: 1, page 21-25
  • ISSN: 0862-7959

Abstract

top
A homothetic arithmetic function of ratio K is a function f : R such that f ( K n ) = f ( n ) for every n . Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of f ( ) in terms of the period and the ratio of f .

How to cite

top

Oller-Marcén, Antonio M.. "On a certain class of arithmetic functions." Mathematica Bohemica 142.1 (2017): 21-25. <http://eudml.org/doc/287924>.

@article{Oller2017,
abstract = {A homothetic arithmetic function of ratio $K$ is a function $f\colon \mathbb \{N\}\rightarrow R$ such that $f(Kn)=f(n)$ for every $n\in \mathbb \{N\}$. Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of $f(\mathbb \{N\})$ in terms of the period and the ratio of $f$.},
author = {Oller-Marcén, Antonio M.},
journal = {Mathematica Bohemica},
keywords = {arithmetic function; periodic function; homothetic function},
language = {eng},
number = {1},
pages = {21-25},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a certain class of arithmetic functions},
url = {http://eudml.org/doc/287924},
volume = {142},
year = {2017},
}

TY - JOUR
AU - Oller-Marcén, Antonio M.
TI - On a certain class of arithmetic functions
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 1
SP - 21
EP - 25
AB - A homothetic arithmetic function of ratio $K$ is a function $f\colon \mathbb {N}\rightarrow R$ such that $f(Kn)=f(n)$ for every $n\in \mathbb {N}$. Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of $f(\mathbb {N})$ in terms of the period and the ratio of $f$.
LA - eng
KW - arithmetic function; periodic function; homothetic function
UR - http://eudml.org/doc/287924
ER -

References

top
  1. Apostol, T. M., Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics Springer, New York (1976). (1976) Zbl0335.10001MR0434929
  2. Cohen, E., 10.2307/2034413, Proc. Am. Math. Soc. 12 (1961), 996. (1961) Zbl0144.28201MR0132717DOI10.2307/2034413
  3. Ghiyasi, A. K., 10.3103/S0027132208060077, Mosc. Univ. Math. Bull. 63 (2008), 265-269 translation from Vest. Mosk. Univ. Mat. Mekh. 63 2008 44-48. (2008) Zbl1304.11085MR2517021DOI10.3103/S0027132208060077
  4. Grau, J. M., Oller-Marcén, A. M., 10.4134/BKMS.2014.51.5.1325, Bull. Korean Math. Soc. 51 (2014), 1325-1337. (2014) Zbl1302.11002MR3267232DOI10.4134/BKMS.2014.51.5.1325
  5. Pilehrood, T. Hessami, Pilehrood, K. Hessami, 10.1134/S0001434608010306, Math. Notes 83 (2008), 281-284 translation from Mat. Zametki83 2008 312-315. (2008) Zbl1157.11031MR2431590DOI10.1134/S0001434608010306
  6. Ji, Q.-Z., Ji, C.-G., 10.1090/S0002-9939-10-10408-0, Proc. Am. Math. Soc. 138 (2010), 3025-3035. (2010) Zbl1246.11013MR2653927DOI10.1090/S0002-9939-10-10408-0
  7. Rausch, U., 10.1006/jnth.1994.1011, J. Number Theory 46 (1994), 179-195. (1994) Zbl0795.11033MR1269251DOI10.1006/jnth.1994.1011
  8. Steuding, J., Dirichlet series associated to periodic arithmetic functions and the zeros of Dirichlet L -functions, Analytic and Probabilistic Methods in Number Theory. Proc. Int. Conf., Palanga, Lithuania, 2001 A. Dubickas et al. TEV, Vilnius (2002), 282-296. (2002) Zbl1035.11041MR1964871

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.