Some properties of the class of arithmetic functions
R. P. Pakshirajan (1963)
Annales Polonici Mathematici
Similarity:
R. P. Pakshirajan (1963)
Annales Polonici Mathematici
Similarity:
Angkana Sripayap, Pattira Ruengsinsub, Teerapat Srichan (2022)
Czechoslovak Mathematical Journal
Similarity:
Let and . Denote by the set of all integers whose canonical prime representation has all exponents being a multiple of or belonging to the arithmetic progression , . All integers in are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given. ...
Atsushi Moriwaki (2014)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
In this paper, we give a numerical characterization of nef arithmetic -Cartier divisors of -type on an arithmetic surface. Namely an arithmetic -Cartier divisor of -type is nef if and only if is pseudo-effective and .
Liuying Wu (2024)
Czechoslovak Mathematical Journal
Similarity:
Let denote a positive integer with at most prime factors, counted according to multiplicity. For integers , such that , let denote the least in the arithmetic progression . It is proved that for sufficiently large , we have This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained
Melvyn B. Nathanson, Kevin O'Bryant (2015)
Acta Arithmetica
Similarity:
A geometric progression of length k and integer ratio is a set of numbers of the form for some positive real number a and integer r ≥ 2. For each integer k ≥ 3, a greedy algorithm is used to construct a strictly decreasing sequence of positive real numbers with a₁ = 1 such that the set contains no geometric progression of length k and integer ratio. Moreover, is a maximal subset of (0,1] that contains no geometric progression of length k and integer ratio. It is also proved that...
Watcharapon Pimsert, Teerapat Srichan, Pinthira Tangsupphathawat (2023)
Czechoslovak Mathematical Journal
Similarity:
We use the estimation of the number of integers such that belongs to an arithmetic progression to study the coprimality of integers in , , .
Taras O. Banakh, Dario Spirito, Sławomir Turek (2021)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
The Golomb space is the set of positive integers endowed with the topology generated by the base consisting of arithmetic progressions with coprime . We prove that the Golomb space is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.
Bo Chen (2024)
Czechoslovak Mathematical Journal
Similarity:
Let be the integral part of a real number , and let be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum , which improves the recent result of J. Stucky (2022).
Taras Banakh, Vesko Valov
Similarity:
General position properties play a crucial role in geometric and infinite-dimensional topologies. Often such properties provide convenient tools for establishing various universality results. One of well-known general position properties is DDⁿ, the property of disjoint n-cells. Each Polish -space X possessing DDⁿ contains a topological copy of each n-dimensional compact metric space. This fact implies, in particular, the classical Lefschetz-Menger-Nöbeling-Pontryagin-Tolstova embedding...
Przemysław Mazur (2015)
Acta Arithmetica
Similarity:
We prove that every set A ⊂ ℤ satisfying for t and δ in suitable ranges must be very close to an arithmetic progression. We use this result to improve the estimates of Green and Morris for the probability that a random subset A ⊂ ℕ satisfies |ℕ∖(A+A)| ≥ k; specifically, we show that .
Viktor Harangi (2011)
Fundamenta Mathematicae
Similarity:
Let be arbitrary nonzero real numbers. An -decomposition of a function f:ℝ → ℝ is a sum where is an -periodic function. Such a decomposition is not unique because there are several solutions of the equation with -periodic. We will give solutions of this equation with a certain simple structure (trivial solutions) and study whether there exist other solutions or not. If not, we say that the -decomposition is essentially unique. We characterize those periods for which essential...