Impulsive semilinear neutral functional differential inclusions with multivalued jumps
Nadjet Abada; Ravi P. Agarwal; Mouffak Benchohra; Hadda Hammouche
Applications of Mathematics (2011)
- Volume: 56, Issue: 2, page 227-250
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAbada, Nadjet, et al. "Impulsive semilinear neutral functional differential inclusions with multivalued jumps." Applications of Mathematics 56.2 (2011): 227-250. <http://eudml.org/doc/116522>.
@article{Abada2011,
abstract = {In this paper we establish sufficient conditions for the existence of mild solutions and extremal mild solutions for some densely defined impulsive semilinear neutral functional differential inclusions in separable Banach spaces. We rely on a fixed point theorem for the sum of completely continuous and contraction operators.},
author = {Abada, Nadjet, Agarwal, Ravi P., Benchohra, Mouffak, Hammouche, Hadda},
journal = {Applications of Mathematics},
keywords = {impulsive semilinear neutral functional differential equation; densely defined operator; infinite delay; phase space; fixed point; mild solutions; extremal mild solution; impulsive semilinear neutral functional differential equation; densely defined operator; infinite delay; phase space; fixed point; mild solution; extremal mild solution},
language = {eng},
number = {2},
pages = {227-250},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Impulsive semilinear neutral functional differential inclusions with multivalued jumps},
url = {http://eudml.org/doc/116522},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Abada, Nadjet
AU - Agarwal, Ravi P.
AU - Benchohra, Mouffak
AU - Hammouche, Hadda
TI - Impulsive semilinear neutral functional differential inclusions with multivalued jumps
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 227
EP - 250
AB - In this paper we establish sufficient conditions for the existence of mild solutions and extremal mild solutions for some densely defined impulsive semilinear neutral functional differential inclusions in separable Banach spaces. We rely on a fixed point theorem for the sum of completely continuous and contraction operators.
LA - eng
KW - impulsive semilinear neutral functional differential equation; densely defined operator; infinite delay; phase space; fixed point; mild solutions; extremal mild solution; impulsive semilinear neutral functional differential equation; densely defined operator; infinite delay; phase space; fixed point; mild solution; extremal mild solution
UR - http://eudml.org/doc/116522
ER -
References
top- Abada, N., Benchohra, M., Hammouche, H., 10.1016/j.na.2007.08.060, Nonlinear Anal., Theory Methods Appl. 69 (2008), 2892-2909. (2008) Zbl1160.34068MR2452100DOI10.1016/j.na.2007.08.060
- Abada, N., Benchohra, M., Hammouche, H., Ouahab, A., 10.7151/dmdico.1088, Discuss. Math., Differ. Incl. Control Optim. 27 (2007), 329-347. (2007) Zbl1145.34047MR2413817DOI10.7151/dmdico.1088
- Ahmed, N. U., Semigroup Theory with Applications to Systems and Control. Pitman Research Notes in Mathematics Series, 246, Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1991). (1991) MR1100706
- Ahmed, N. U., Dynamic Systems and Control with Applications, World Scientific Publishing Hackensack (2006). (2006) Zbl1127.93001MR2257896
- Ahmed, N. U., 10.1016/S0362-546X(99)00417-4, Nonlinear Anal., Theory Methods Appl. 45 (2001), 693-706. (2001) Zbl0995.34053MR1841203DOI10.1016/S0362-546X(99)00417-4
- Ahmed, N. U., Optimal impulse control for impulsive systems in Banach spaces, Int. J. Differ. Equ. Appl. 1 (2000), 37-52. (2000) Zbl0959.49023MR1734517
- Bajnov, D. D., Simeonov, P. S., Systems with Impulse Effect. Stability, Theory and Applications, Ellis Horwood Chichester (1989). (1989) Zbl0683.34032MR1010418
- Belmekki, M., Benchohra, M., Ezzinbi, K., Ntouyas, S. K., Existence results for some partial functional differential equations with infinite delay, Nonlinear Stud. 15 (2008), 373-385. (2008) Zbl1182.34102MR2483148
- Benchohra, M., Górniewicz, L., Ntouyas, S. K., Controllability of Some Nonlinear Systems in Banach Spaces (The Fixed Point Theory Approach), Pawel Wlodkowic University College, Wydawnictwo Naukowe NOVUM Plock (2003). (2003) Zbl1059.49001
- Benchohra, M., Henderson, J., Ntouyas, S. K., Impulsive Differential Equations and Inclusions, Vol. 2, Hindawi Publishing Corporation New York (2006). (2006) MR2322133
- Benedetti, I., 10.7151/dmdico.1049, Discuss. Math., Differ. Incl. Control Optim. 24 (2004), 13-30. (2004) Zbl1071.34087MR2118212DOI10.7151/dmdico.1049
- Corduneanu, C., Lakshmikantham, V., 10.1016/0362-546X(80)90001-2, Nonlinear Anal., Theory Methods Appl. 4 (1980), 831-877. (1980) Zbl0449.34048MR0586852DOI10.1016/0362-546X(80)90001-2
- Prato, G. Da, Grisvard, E., On extrapolation spaces, Atti. Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 72 (1982), 330-332. (1982) Zbl0527.46055MR0726298
- Dhage, B. C., Multivalued maping and fixed point, Nonlinear Funct. Anal. Appl. 10 (2005), 359-378. (2005) MR2194603
- Dhage, B. C., A fixed point theorem for multi-valued mappings on ordered Banach spaces with applications II, Panam. Math. J. 15 (2005), 15-34. (2005) MR2144192
- Dhage, B. C., Gatsori, E., Ntouyas, S. K., Existence theory for perturbed functional differential inclusions, Commun. Appl. Nonlinear Anal. 13 (2006), 15-26. (2006) Zbl1210.34084MR2226948
- Deimling, K., Multivalued Differential Equations, Walter De Gruyter Berlin (1992). (1992) Zbl0820.34009MR1189795
- Engel, K. J., Nagel, R., One-Parameter Semigroups for Linear Evolution Equations, Springer Berlin (2000). (2000) Zbl0952.47036MR1721989
- Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Academic Press Boston (1988). (1988) Zbl0661.47045MR0959889
- Górniewicz, L., Topological Fixed Point Theory of Multivalued Mappings. Mathematics and Its Applications, 495, Kluwer Academic Publishers Dordrecht (1999). (1999) MR1748378
- Hale, J. K., Theory of Functional Differential Equations, Springer New York (1977). (1977) Zbl0352.34001MR0508721
- Hale, J. K., Kato, J., Phase space for retarded equations with infinite delay, Funkc. Ekvacioj, Ser. Int. 21 (1978), 11-41. (1978) Zbl0383.34055MR0492721
- Hale, J. K., Lunel, S. H. Verduyn, Introduction to Functional Differential Equations. Applied Mathematical Sciences 99, Springer New York (1993). (1993) MR1243878
- Heikkila, S., Lakshmikantham, V., Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations, Marcel Dekker Inc. New York (1994). (1994) MR1280028
- Hernández, E., Henríquez, H. R., 10.1006/jmaa.1997.5875, J. Math. Anal. Appl. 221 (1998), 452-475. (1998) MR1621730DOI10.1006/jmaa.1997.5875
- Henríquez, H. R., 10.1006/jmaa.1997.5899, J. Math. Anal. Appl. 221 (1998), 499-522. (1998) MR1621738DOI10.1006/jmaa.1997.5899
- Hino, Y., Murakami, S., Naito, T., 10.1007/BFb0084439, Springer Berlin (1991). (1991) MR1122588DOI10.1007/BFb0084439
- Hu, Sh., Papageorgiou, N. S., Handbook of Multivalued Analysis. Volume I: Theory, Kluwer Academic Publishers Dordrecht (1997). (1997) Zbl0887.47001MR1485775
- Kamenskii, M., Obukhovskii, V., Zecca, P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. De Gruyter Series in Nonlinear Analysis and Applications, De Gruyter Berlin (2001). (2001) MR1831201
- Kappel, F., Schappacher, W., 10.1016/0022-0396(80)90093-5, J. Differ. Equations 37 (1980), 141-183. (1980) Zbl0466.34036MR0587220DOI10.1016/0022-0396(80)90093-5
- Kisielewicz, M., Differential Inclusions and Optimal Control, Kluwer Academic Publishers Dordrecht (1990). (1990) Zbl0731.49001MR1135796
- Kolmanovskii, V., Myshkis, A., Introduction to the Theory and Applications of Functional-Differential Equations. Mathematics and Its Applications, 463, Kluwer Academic Publishers Dordrecht (1999). (1999) MR1680144
- Kuang, Y., Delay Differential Equations: with Applications in Population Dynamics, Academic Press Boston (1993). (1993) Zbl0777.34002MR1218880
- Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, World Scientific Singapore (1989). (1989) Zbl0719.34002MR1082551
- Lakshmikantham, V., Wen, L., Zhang, B., Theory of Differential Equations with Unbounded Delay. Mathematics and Its Applications, Kluwer Academic Publishers Dordrecht (1994). (1994) MR1319339
- Lasota, A., Opial, Z., An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astronom. Phys. 13 (1965), 781-786. (1965) Zbl0151.10703MR0196178
- Liu, J. H., Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impulsive Syst. 6 (1999), 77-85. (1999) Zbl0932.34067MR1679758
- Migorski, S., Ochal, A., Nonlinear impulsive evolution inclusions of second order, Dyn. Syst. Appl. 16 (2007), 155-173. (2007) Zbl1128.34038MR2305434
- Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer New York (1983). (1983) Zbl0516.47023MR0710486
- Rogovchenko, Y. V., Impulsive evolution systems: Main results and new trends, Dyn. Contin. Discrete Impulsive Syst. 3 (1997), 57-88. (1997) Zbl0879.34014MR1435816
- Rogovchenko, Y. V., 10.1006/jmaa.1997.5245, J. Math. Anal. Appl. 207 (1997), 300-315. (1997) MR1438916DOI10.1006/jmaa.1997.5245
- Samoilenko, A. M., Perestyuk, N. A., Impulsive Differential Equations, World Scientific Singapore (1995). (1995) Zbl0837.34003MR1355787
- Schumacher, K., 10.1007/BF00247662, Arch. Ration. Mech. Anal. 67 (1978), 315-335. (1978) Zbl0383.34052MR0477379DOI10.1007/BF00247662
- Shin, J. S., An existence of functional differential equations, Arch. Ration. Mech. Anal. 30 (1987), 19-29. (1987) MR0915258
- Wu, J., 10.1007/978-1-4612-4050-1, Springer New York (1996). (1996) MR1415838DOI10.1007/978-1-4612-4050-1
- Yosida, K., Functional Analysis, 6th ed, Springer Berlin (1980). (1980) Zbl0435.46002MR0617913
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.