Impulsive semilinear neutral functional differential inclusions with multivalued jumps

Nadjet Abada; Ravi P. Agarwal; Mouffak Benchohra; Hadda Hammouche

Applications of Mathematics (2011)

  • Volume: 56, Issue: 2, page 227-250
  • ISSN: 0862-7940

Abstract

top
In this paper we establish sufficient conditions for the existence of mild solutions and extremal mild solutions for some densely defined impulsive semilinear neutral functional differential inclusions in separable Banach spaces. We rely on a fixed point theorem for the sum of completely continuous and contraction operators.

How to cite

top

Abada, Nadjet, et al. "Impulsive semilinear neutral functional differential inclusions with multivalued jumps." Applications of Mathematics 56.2 (2011): 227-250. <http://eudml.org/doc/116522>.

@article{Abada2011,
abstract = {In this paper we establish sufficient conditions for the existence of mild solutions and extremal mild solutions for some densely defined impulsive semilinear neutral functional differential inclusions in separable Banach spaces. We rely on a fixed point theorem for the sum of completely continuous and contraction operators.},
author = {Abada, Nadjet, Agarwal, Ravi P., Benchohra, Mouffak, Hammouche, Hadda},
journal = {Applications of Mathematics},
keywords = {impulsive semilinear neutral functional differential equation; densely defined operator; infinite delay; phase space; fixed point; mild solutions; extremal mild solution; impulsive semilinear neutral functional differential equation; densely defined operator; infinite delay; phase space; fixed point; mild solution; extremal mild solution},
language = {eng},
number = {2},
pages = {227-250},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Impulsive semilinear neutral functional differential inclusions with multivalued jumps},
url = {http://eudml.org/doc/116522},
volume = {56},
year = {2011},
}

TY - JOUR
AU - Abada, Nadjet
AU - Agarwal, Ravi P.
AU - Benchohra, Mouffak
AU - Hammouche, Hadda
TI - Impulsive semilinear neutral functional differential inclusions with multivalued jumps
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 227
EP - 250
AB - In this paper we establish sufficient conditions for the existence of mild solutions and extremal mild solutions for some densely defined impulsive semilinear neutral functional differential inclusions in separable Banach spaces. We rely on a fixed point theorem for the sum of completely continuous and contraction operators.
LA - eng
KW - impulsive semilinear neutral functional differential equation; densely defined operator; infinite delay; phase space; fixed point; mild solutions; extremal mild solution; impulsive semilinear neutral functional differential equation; densely defined operator; infinite delay; phase space; fixed point; mild solution; extremal mild solution
UR - http://eudml.org/doc/116522
ER -

References

top
  1. Abada, N., Benchohra, M., Hammouche, H., 10.1016/j.na.2007.08.060, Nonlinear Anal., Theory Methods Appl. 69 (2008), 2892-2909. (2008) Zbl1160.34068MR2452100DOI10.1016/j.na.2007.08.060
  2. Abada, N., Benchohra, M., Hammouche, H., Ouahab, A., 10.7151/dmdico.1088, Discuss. Math., Differ. Incl. Control Optim. 27 (2007), 329-347. (2007) Zbl1145.34047MR2413817DOI10.7151/dmdico.1088
  3. Ahmed, N. U., Semigroup Theory with Applications to Systems and Control. Pitman Research Notes in Mathematics Series, 246, Longman Scientific &amp; Technical/John Wiley &amp; Sons Harlow/New York (1991). (1991) MR1100706
  4. Ahmed, N. U., Dynamic Systems and Control with Applications, World Scientific Publishing Hackensack (2006). (2006) Zbl1127.93001MR2257896
  5. Ahmed, N. U., 10.1016/S0362-546X(99)00417-4, Nonlinear Anal., Theory Methods Appl. 45 (2001), 693-706. (2001) Zbl0995.34053MR1841203DOI10.1016/S0362-546X(99)00417-4
  6. Ahmed, N. U., Optimal impulse control for impulsive systems in Banach spaces, Int. J. Differ. Equ. Appl. 1 (2000), 37-52. (2000) Zbl0959.49023MR1734517
  7. Bajnov, D. D., Simeonov, P. S., Systems with Impulse Effect. Stability, Theory and Applications, Ellis Horwood Chichester (1989). (1989) Zbl0683.34032MR1010418
  8. Belmekki, M., Benchohra, M., Ezzinbi, K., Ntouyas, S. K., Existence results for some partial functional differential equations with infinite delay, Nonlinear Stud. 15 (2008), 373-385. (2008) Zbl1182.34102MR2483148
  9. Benchohra, M., Górniewicz, L., Ntouyas, S. K., Controllability of Some Nonlinear Systems in Banach Spaces (The Fixed Point Theory Approach), Pawel Wlodkowic University College, Wydawnictwo Naukowe NOVUM Plock (2003). (2003) Zbl1059.49001
  10. Benchohra, M., Henderson, J., Ntouyas, S. K., Impulsive Differential Equations and Inclusions, Vol. 2, Hindawi Publishing Corporation New York (2006). (2006) MR2322133
  11. Benedetti, I., 10.7151/dmdico.1049, Discuss. Math., Differ. Incl. Control Optim. 24 (2004), 13-30. (2004) Zbl1071.34087MR2118212DOI10.7151/dmdico.1049
  12. Corduneanu, C., Lakshmikantham, V., 10.1016/0362-546X(80)90001-2, Nonlinear Anal., Theory Methods Appl. 4 (1980), 831-877. (1980) Zbl0449.34048MR0586852DOI10.1016/0362-546X(80)90001-2
  13. Prato, G. Da, Grisvard, E., On extrapolation spaces, Atti. Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 72 (1982), 330-332. (1982) Zbl0527.46055MR0726298
  14. Dhage, B. C., Multivalued maping and fixed point, Nonlinear Funct. Anal. Appl. 10 (2005), 359-378. (2005) MR2194603
  15. Dhage, B. C., A fixed point theorem for multi-valued mappings on ordered Banach spaces with applications II, Panam. Math. J. 15 (2005), 15-34. (2005) MR2144192
  16. Dhage, B. C., Gatsori, E., Ntouyas, S. K., Existence theory for perturbed functional differential inclusions, Commun. Appl. Nonlinear Anal. 13 (2006), 15-26. (2006) Zbl1210.34084MR2226948
  17. Deimling, K., Multivalued Differential Equations, Walter De Gruyter Berlin (1992). (1992) Zbl0820.34009MR1189795
  18. Engel, K. J., Nagel, R., One-Parameter Semigroups for Linear Evolution Equations, Springer Berlin (2000). (2000) Zbl0952.47036MR1721989
  19. Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Academic Press Boston (1988). (1988) Zbl0661.47045MR0959889
  20. Górniewicz, L., Topological Fixed Point Theory of Multivalued Mappings. Mathematics and Its Applications, 495, Kluwer Academic Publishers Dordrecht (1999). (1999) MR1748378
  21. Hale, J. K., Theory of Functional Differential Equations, Springer New York (1977). (1977) Zbl0352.34001MR0508721
  22. Hale, J. K., Kato, J., Phase space for retarded equations with infinite delay, Funkc. Ekvacioj, Ser. Int. 21 (1978), 11-41. (1978) Zbl0383.34055MR0492721
  23. Hale, J. K., Lunel, S. H. Verduyn, Introduction to Functional Differential Equations. Applied Mathematical Sciences 99, Springer New York (1993). (1993) MR1243878
  24. Heikkila, S., Lakshmikantham, V., Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations, Marcel Dekker Inc. New York (1994). (1994) MR1280028
  25. Hernández, E., Henríquez, H. R., 10.1006/jmaa.1997.5875, J. Math. Anal. Appl. 221 (1998), 452-475. (1998) MR1621730DOI10.1006/jmaa.1997.5875
  26. Henríquez, H. R., 10.1006/jmaa.1997.5899, J. Math. Anal. Appl. 221 (1998), 499-522. (1998) MR1621738DOI10.1006/jmaa.1997.5899
  27. Hino, Y., Murakami, S., Naito, T., 10.1007/BFb0084439, Springer Berlin (1991). (1991) MR1122588DOI10.1007/BFb0084439
  28. Hu, Sh., Papageorgiou, N. S., Handbook of Multivalued Analysis. Volume I: Theory, Kluwer Academic Publishers Dordrecht (1997). (1997) Zbl0887.47001MR1485775
  29. Kamenskii, M., Obukhovskii, V., Zecca, P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. De Gruyter Series in Nonlinear Analysis and Applications, De Gruyter Berlin (2001). (2001) MR1831201
  30. Kappel, F., Schappacher, W., 10.1016/0022-0396(80)90093-5, J. Differ. Equations 37 (1980), 141-183. (1980) Zbl0466.34036MR0587220DOI10.1016/0022-0396(80)90093-5
  31. Kisielewicz, M., Differential Inclusions and Optimal Control, Kluwer Academic Publishers Dordrecht (1990). (1990) Zbl0731.49001MR1135796
  32. Kolmanovskii, V., Myshkis, A., Introduction to the Theory and Applications of Functional-Differential Equations. Mathematics and Its Applications, 463, Kluwer Academic Publishers Dordrecht (1999). (1999) MR1680144
  33. Kuang, Y., Delay Differential Equations: with Applications in Population Dynamics, Academic Press Boston (1993). (1993) Zbl0777.34002MR1218880
  34. Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, World Scientific Singapore (1989). (1989) Zbl0719.34002MR1082551
  35. Lakshmikantham, V., Wen, L., Zhang, B., Theory of Differential Equations with Unbounded Delay. Mathematics and Its Applications, Kluwer Academic Publishers Dordrecht (1994). (1994) MR1319339
  36. Lasota, A., Opial, Z., An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astronom. Phys. 13 (1965), 781-786. (1965) Zbl0151.10703MR0196178
  37. Liu, J. H., Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impulsive Syst. 6 (1999), 77-85. (1999) Zbl0932.34067MR1679758
  38. Migorski, S., Ochal, A., Nonlinear impulsive evolution inclusions of second order, Dyn. Syst. Appl. 16 (2007), 155-173. (2007) Zbl1128.34038MR2305434
  39. Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer New York (1983). (1983) Zbl0516.47023MR0710486
  40. Rogovchenko, Y. V., Impulsive evolution systems: Main results and new trends, Dyn. Contin. Discrete Impulsive Syst. 3 (1997), 57-88. (1997) Zbl0879.34014MR1435816
  41. Rogovchenko, Y. V., 10.1006/jmaa.1997.5245, J. Math. Anal. Appl. 207 (1997), 300-315. (1997) MR1438916DOI10.1006/jmaa.1997.5245
  42. Samoilenko, A. M., Perestyuk, N. A., Impulsive Differential Equations, World Scientific Singapore (1995). (1995) Zbl0837.34003MR1355787
  43. Schumacher, K., 10.1007/BF00247662, Arch. Ration. Mech. Anal. 67 (1978), 315-335. (1978) Zbl0383.34052MR0477379DOI10.1007/BF00247662
  44. Shin, J. S., An existence of functional differential equations, Arch. Ration. Mech. Anal. 30 (1987), 19-29. (1987) MR0915258
  45. Wu, J., 10.1007/978-1-4612-4050-1, Springer New York (1996). (1996) MR1415838DOI10.1007/978-1-4612-4050-1
  46. Yosida, K., Functional Analysis, 6th ed, Springer Berlin (1980). (1980) Zbl0435.46002MR0617913

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.