Displaying similar documents to “Functions of finite fractional variation and their applications to fractional impulsive equations”

Pseudo almost periodicity of fractional integro-differential equations with impulsive effects in Banach spaces

Zhinan Xia (2017)

Czechoslovak Mathematical Journal

Similarity:

In this paper, for the impulsive fractional integro-differential equations involving Caputo fractional derivative in Banach space, we investigate the existence and uniqueness of a pseudo almost periodic P C -mild solution. The working tools are based on the fixed point theorems, the fractional powers of operators and fractional calculus. Some known results are improved and generalized. Finally, existence and uniqueness of a pseudo almost periodic P C -mild solution of a two-dimensional impulsive...

A new characteristic property of Mittag-Leffler functions and fractional cosine functions

Zhan-Dong Mei, Ji-Gen Peng, Jun-Xiong Jia (2014)

Studia Mathematica

Similarity:

A new characteristic property of the Mittag-Leffler function E α ( a t α ) with 1 < α < 2 is deduced. Motivated by this property, a new notion, named α-order cosine function, is developed. It is proved that an α-order cosine function is associated with a solution operator of an α-order abstract Cauchy problem. Consequently, an α-order abstract Cauchy problem is well-posed if and only if its coefficient operator generates a unique α-order cosine function.

Left general fractional monotone approximation theory

George A. Anastassiou (2016)

Applicationes Mathematicae

Similarity:

We introduce left general fractional Caputo style derivatives with respect to an absolutely continuous strictly increasing function g. We give various examples of such fractional derivatives for different g. Let f be a p-times continuously differentiable function on [a,b], and let L be a linear left general fractional differential operator such that L(f) is non-negative over a closed subinterval I of [a,b]. We find a sequence of polynomials Qₙ of degree ≤n such that L(Qₙ) is non-negative...

Suitable domains to define fractional integrals of Weyl via fractional powers of operators

Celso Martínez, Antonia Redondo, Miguel Sanz (2011)

Studia Mathematica

Similarity:

We present a new method to study the classical fractional integrals of Weyl. This new approach basically consists in considering these operators in the largest space where they make sense. In particular, we construct a theory of fractional integrals of Weyl by studying these operators in an appropriate Fréchet space. This is a function space which contains the L p ( ) -spaces, and it appears in a natural way if we wish to identify these fractional operators with fractional powers of a suitable...

Fractional Langevin equation with α-stable noise. A link to fractional ARIMA time series

M. Magdziarz, A. Weron (2007)

Studia Mathematica

Similarity:

We introduce a fractional Langevin equation with α-stable noise and show that its solution Y κ ( t ) , t 0 is the stationary α-stable Ornstein-Uhlenbeck-type process recently studied by Taqqu and Wolpert. We examine the asymptotic dependence structure of Y κ ( t ) via the measure of its codependence r(θ₁,θ₂,t). We prove that Y κ ( t ) is not a long-memory process in the sense of r(θ₁,θ₂,t). However, we find two natural continuous-time analogues of fractional ARIMA time series with long memory in the framework of...

Multiplicity results for a class of fractional boundary value problems

Nemat Nyamoradi (2013)

Annales Polonici Mathematici

Similarity:

We prove the existence of at least three solutions to the following fractional boundary value problem: ⎧ - d / d t ( 1 / 2 0 D t - σ ( u ' ( t ) ) + 1 / 2 t D T - σ ( u ' ( t ) ) ) - λ β ( t ) f ( u ( t ) ) - μ γ ( t ) g ( u ( t ) ) = 0 , a.e. t ∈ [0, T], ⎨ ⎩ u (0) = u (T) = 0, where 0 D t - σ and t D T - σ are the left and right Riemann-Liouville fractional integrals of order 0 ≤ σ < 1 respectively. The approach is based on a recent three critical points theorem of Ricceri [B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal. 74 (2011), 7446-7454].

Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type

Juan Luis Vázquez (2014)

Journal of the European Mathematical Society

Similarity:

We establish the existence, uniqueness and main properties of the fundamental solutions for the fractional porous medium equation introduced in [51]. They are self-similar functions of the form u ( x , t ) = t α f ( | x | t β ) with suitable and β . As a main application of this construction, we prove that the asymptotic behaviour of general solutions is represented by such special solutions. Very singular solutions are also constructed. Among other interesting qualitative properties of the equation we prove an Aleksandrov...

Set-valued fractional order differential equations in the space of summable functions

Hussein A.H. Salem (2008)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, we study the existence of integrable solutions for the set-valued differential equation of fractional type ( D α - i = 1 n - 1 a i D α i ) x ( t ) F ( t , x ( φ ( t ) ) ) , a.e. on (0,1), I 1 - α x ( 0 ) = c , αₙ ∈ (0,1), where F(t,·) is lower semicontinuous from ℝ into ℝ and F(·,·) is measurable. The corresponding single-valued problem will be considered first.

Fractional domination in prisms

Matthew Walsh (2007)

Discussiones Mathematicae Graph Theory

Similarity:

Mynhardt has conjectured that if G is a graph such that γ(G) = γ(πG) for all generalized prisms πG then G is edgeless. The fractional analogue of this conjecture is established and proved by showing that, if G is a graph with edges, then γ f ( G × K ) > γ f ( G ) .

Trace inequalities for fractional integrals in grand Lebesgue spaces

Vakhtang Kokilashvili, Alexander Meskhi (2012)

Studia Mathematica

Similarity:

rning the boundedness for fractional maximal and potential operators defined on quasi-metric measure spaces from L p ) , θ ( X , μ ) to L q ) , q θ / p ( X , ν ) (trace inequality), where 1 < p < q < ∞, θ > 0 and μ satisfies the doubling condition in X. The results are new even for Euclidean spaces. For example, from our general results D. Adams-type necessary and sufficient conditions guaranteeing the trace inequality for fractional maximal functions and potentials defined on so-called s-sets in ℝⁿ follow. Trace...

Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space H 2

Mahsa Fatehi, Bahram Khani Robati (2012)

Czechoslovak Mathematical Journal

Similarity:

In 1999 Nina Zorboska and in 2003 P. S. Bourdon, D. Levi, S. K. Narayan and J. H. Shapiro investigated the essentially normal composition operator C ϕ , when ϕ is a linear-fractional self-map of 𝔻 . In this paper first, we investigate the essential normality problem for the operator T w C ϕ on the Hardy space H 2 , where w is a bounded measurable function on 𝔻 which is continuous at each point of F ( ϕ ) , ϕ 𝒮 ( 2 ) , and T w is the Toeplitz operator with symbol w . Then we use these results and characterize the essentially...

The general solution of impulsive systems with Riemann-Liouville fractional derivatives

Xianmin Zhang, Wenbin Ding, Hui Peng, Zuohua Liu, Tong Shu (2016)

Open Mathematics

Similarity:

In this paper, we study a kind of fractional differential system with impulsive effect and find the formula of general solution for the impulsive fractional-order system by analysis of the limit case (as impulse tends to zero). The obtained result shows that the deviation caused by impulses for fractional-order system is undetermined. An example is also provided to illustrate the result.

Multiplicity solutions of a class fractional Schrödinger equations

Li-Jiang Jia, Bin Ge, Ying-Xin Cui, Liang-Liang Sun (2017)

Open Mathematics

Similarity:

In this paper, we study the existence of nontrivial solutions to a class fractional Schrödinger equations (−Δ)su+V(x)u=λf(x,u)inRN, ( - Δ ) s u + V ( x ) u = λ f ( x , u ) in N , where [...] (−Δ)su(x)=2limε→0∫RN∖Bε(X)u(x)−u(y)|x−y|N+2sdy,x∈RN ( - Δ ) s u ( x ) = 2 lim ε 0 N B ε ( X ) u ( x ) - u ( y ) | x - y | N + 2 s d y , x N is a fractional operator and s ∈ (0, 1). By using variational methods, we prove this problem has at least two nontrivial solutions in a suitable weighted fractional Sobolev space.

Pointwise inequalities and approximation in fractional Sobolev spaces

David Swanson (2002)

Studia Mathematica

Similarity:

We prove that a function belonging to a fractional Sobolev space L α , p ( ) may be approximated in capacity and norm by smooth functions belonging to C m , λ ( ) , 0 < m + λ < α. Our results generalize and extend those of [12], [4], [14], and [11].