Filter factors of truncated TLS regularization with multiple observations
Iveta Hnětynková; Martin Plešinger; Jana Žáková
Applications of Mathematics (2017)
- Volume: 62, Issue: 2, page 105-120
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHnětynková, Iveta, Plešinger, Martin, and Žáková, Jana. "Filter factors of truncated TLS regularization with multiple observations." Applications of Mathematics 62.2 (2017): 105-120. <http://eudml.org/doc/287936>.
@article{Hnětynková2017,
abstract = {The total least squares (TLS) and truncated TLS (T-TLS) methods are widely known linear data fitting approaches, often used also in the context of very ill-conditioned, rank-deficient, or ill-posed problems. Regularization properties of T-TLS applied to linear approximation problems $Ax\approx b$ were analyzed by Fierro, Golub, Hansen, and O’Leary (1997) through the so-called filter factors allowing to represent the solution in terms of a filtered pseudoinverse of $A$ applied to $b$. This paper focuses on the situation when multiple observations $b_1,\ldots ,b_d$ are available, i.e., the T-TLS method is applied to the problem $AX\approx B$, where $B=[b_1,\ldots ,b_d]$ is a matrix. It is proved that the filtering representation of the T-TLS solution can be generalized to this case. The corresponding filter factors are explicitly derived.},
author = {Hnětynková, Iveta, Plešinger, Martin, Žáková, Jana},
journal = {Applications of Mathematics},
keywords = {truncated total least squares; multiple right-hand sides; eigenvalues of rank-$d$ update; ill-posed problem; regularization; filter factors},
language = {eng},
number = {2},
pages = {105-120},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Filter factors of truncated TLS regularization with multiple observations},
url = {http://eudml.org/doc/287936},
volume = {62},
year = {2017},
}
TY - JOUR
AU - Hnětynková, Iveta
AU - Plešinger, Martin
AU - Žáková, Jana
TI - Filter factors of truncated TLS regularization with multiple observations
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 105
EP - 120
AB - The total least squares (TLS) and truncated TLS (T-TLS) methods are widely known linear data fitting approaches, often used also in the context of very ill-conditioned, rank-deficient, or ill-posed problems. Regularization properties of T-TLS applied to linear approximation problems $Ax\approx b$ were analyzed by Fierro, Golub, Hansen, and O’Leary (1997) through the so-called filter factors allowing to represent the solution in terms of a filtered pseudoinverse of $A$ applied to $b$. This paper focuses on the situation when multiple observations $b_1,\ldots ,b_d$ are available, i.e., the T-TLS method is applied to the problem $AX\approx B$, where $B=[b_1,\ldots ,b_d]$ is a matrix. It is proved that the filtering representation of the T-TLS solution can be generalized to this case. The corresponding filter factors are explicitly derived.
LA - eng
KW - truncated total least squares; multiple right-hand sides; eigenvalues of rank-$d$ update; ill-posed problem; regularization; filter factors
UR - http://eudml.org/doc/287936
ER -
References
top- Björck, Å., 10.1137/1.9781611971484, Society for Industrial and Applied Mathematics, Philadelphia (1996). (1996) Zbl0847.65023MR1386889DOI10.1137/1.9781611971484
- Bunch, J. R., Nielsen, C. P., 10.1007/BF01397471, Numer. Math. 31 (1978), 111-129. (1978) Zbl0421.65028MR0509670DOI10.1007/BF01397471
- Bunch, J. R., Nielsen, C. P., Sorensen, D. C., 10.1007/BF01396012, Numer. Math. 31 (1978), 31-48. (1978) Zbl0369.65007MR0508586DOI10.1007/BF01396012
- Fierro, R. D., Golub, G. H., Hansen, P. C., O'Leary, D. P., 10.1137/S1064827594263837, SIAM J. Sci. Comput. 18 (1997), 1223-1241. (1997) Zbl0891.65040MR1453566DOI10.1137/S1064827594263837
- Golub, G. H., 10.1137/1015032, SIAM Rev. 15 (1973), 318-334. (1973) Zbl0254.65027MR0329227DOI10.1137/1015032
- Golub, G. H., Loan, C. F. Van, 10.1137/0717073, SIAM J. Numer. Anal. 17 (1980), 883-893. (1980) Zbl0468.65011MR0595451DOI10.1137/0717073
- Golub, G. H., Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore (2013). (2013) Zbl1268.65037MR3024913
- Hadamard, J., Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris (1932). (1932) Zbl0006.20501
- Hansen, P. C., 10.1137/1.9780898719697, SIAM Monographs on Mathematical Modeling and Computation 4, Society for Industrial and Applied Mathematics, Philadelphia (1998). (1998) Zbl0890.65037MR1486577DOI10.1137/1.9780898719697
- Hansen, P. C., 10.1137/1.9780898718836, Fundamentals of Algorithms 7, Society for Industrial and Applied Mathematics, Philadelphia (2010). (2010) Zbl1197.65054MR2584074DOI10.1137/1.9780898718836
- Hansen, P. C., Nagy, J. G., O'Leary, D. P., 10.1137/1.9780898718874, Fundamentals of Algorithms 3, Society for Industrial and Applied Mathematics, Philadelphia (2006). (2006) Zbl1112.68127MR2271138DOI10.1137/1.9780898718874
- Hansen, P. C., Pereyra, V., Scherer, G., Least Squares Data Fitting with Applications, Johns Hopkins University Press, Baltimore, (2013). (2013) Zbl1270.65008MR3012616
- Hnětynková, I., Plešinger, M., Sima, D. M., 10.1137/15M1028339, SIAM J. Matrix Anal. Appl. 37 (2016), 861-876. (2016) Zbl1343.15002MR3523076DOI10.1137/15M1028339
- Hnětynková, I., Plešinger, M., Sima, D. M., Strakoš, Z., Huffel, S. Van, 10.1137/100813348, SIAM J. Matrix Anal. Appl. 32 (2011), 748-770. (2011) Zbl1235.15016MR2825323DOI10.1137/100813348
- Hnětynková, I., Plešinger, M., Strakoš, Z., 10.1137/120884237, SIAM J. Matrix Anal. Appl. 34 (2013), 917-931. (2013) Zbl1279.65041MR3073354DOI10.1137/120884237
- Hnětynková, I., Plešinger, M., Strakoš, Z., 10.1137/140968914, SIAM J. Matrix Anal. Appl. 36 (2015), 417-434. (2015) Zbl1320.65057MR3335497DOI10.1137/140968914
- Natterer, F., 10.1007/978-3-663-01409-6, (1986). (1986) Zbl0617.92001MR0856916DOI10.1007/978-3-663-01409-6
- Huffel, S. Van, Vandewalle, J., 10.1137/1.9781611971002, Frontiers in Applied Mathematics 9, Society for Industrial and Applied Mathematics, Philadelphia (1991). (1991) Zbl0789.62054MR1118607DOI10.1137/1.9781611971002
- Wang, X.-F., 10.1080/03081087.2016.1189493, Linear Multilinear Algebra 65 (2017), 438-456. (2017) Zbl06687266MR3589611DOI10.1080/03081087.2016.1189493
- Wei, M., 10.1007/BF01396223, Numer. Math. 62 (1992), 123-148. (1992) Zbl0761.65030MR1159048DOI10.1007/BF01396223
- Wei, M., 10.1137/0613047, SIAM J. Matrix Anal. Appl. 13 (1992), 746-763. (1992) Zbl0758.65039MR1168020DOI10.1137/0613047
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.