Filter factors of truncated TLS regularization with multiple observations

Iveta Hnětynková; Martin Plešinger; Jana Žáková

Applications of Mathematics (2017)

  • Volume: 62, Issue: 2, page 105-120
  • ISSN: 0862-7940

Abstract

top
The total least squares (TLS) and truncated TLS (T-TLS) methods are widely known linear data fitting approaches, often used also in the context of very ill-conditioned, rank-deficient, or ill-posed problems. Regularization properties of T-TLS applied to linear approximation problems A x b were analyzed by Fierro, Golub, Hansen, and O’Leary (1997) through the so-called filter factors allowing to represent the solution in terms of a filtered pseudoinverse of A applied to b . This paper focuses on the situation when multiple observations b 1 , ... , b d are available, i.e., the T-TLS method is applied to the problem A X B , where B = [ b 1 , ... , b d ] is a matrix. It is proved that the filtering representation of the T-TLS solution can be generalized to this case. The corresponding filter factors are explicitly derived.

How to cite

top

Hnětynková, Iveta, Plešinger, Martin, and Žáková, Jana. "Filter factors of truncated TLS regularization with multiple observations." Applications of Mathematics 62.2 (2017): 105-120. <http://eudml.org/doc/287936>.

@article{Hnětynková2017,
abstract = {The total least squares (TLS) and truncated TLS (T-TLS) methods are widely known linear data fitting approaches, often used also in the context of very ill-conditioned, rank-deficient, or ill-posed problems. Regularization properties of T-TLS applied to linear approximation problems $Ax\approx b$ were analyzed by Fierro, Golub, Hansen, and O’Leary (1997) through the so-called filter factors allowing to represent the solution in terms of a filtered pseudoinverse of $A$ applied to $b$. This paper focuses on the situation when multiple observations $b_1,\ldots ,b_d$ are available, i.e., the T-TLS method is applied to the problem $AX\approx B$, where $B=[b_1,\ldots ,b_d]$ is a matrix. It is proved that the filtering representation of the T-TLS solution can be generalized to this case. The corresponding filter factors are explicitly derived.},
author = {Hnětynková, Iveta, Plešinger, Martin, Žáková, Jana},
journal = {Applications of Mathematics},
keywords = {truncated total least squares; multiple right-hand sides; eigenvalues of rank-$d$ update; ill-posed problem; regularization; filter factors},
language = {eng},
number = {2},
pages = {105-120},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Filter factors of truncated TLS regularization with multiple observations},
url = {http://eudml.org/doc/287936},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Hnětynková, Iveta
AU - Plešinger, Martin
AU - Žáková, Jana
TI - Filter factors of truncated TLS regularization with multiple observations
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 105
EP - 120
AB - The total least squares (TLS) and truncated TLS (T-TLS) methods are widely known linear data fitting approaches, often used also in the context of very ill-conditioned, rank-deficient, or ill-posed problems. Regularization properties of T-TLS applied to linear approximation problems $Ax\approx b$ were analyzed by Fierro, Golub, Hansen, and O’Leary (1997) through the so-called filter factors allowing to represent the solution in terms of a filtered pseudoinverse of $A$ applied to $b$. This paper focuses on the situation when multiple observations $b_1,\ldots ,b_d$ are available, i.e., the T-TLS method is applied to the problem $AX\approx B$, where $B=[b_1,\ldots ,b_d]$ is a matrix. It is proved that the filtering representation of the T-TLS solution can be generalized to this case. The corresponding filter factors are explicitly derived.
LA - eng
KW - truncated total least squares; multiple right-hand sides; eigenvalues of rank-$d$ update; ill-posed problem; regularization; filter factors
UR - http://eudml.org/doc/287936
ER -

References

top
  1. Björck, Å., 10.1137/1.9781611971484, Society for Industrial and Applied Mathematics, Philadelphia (1996). (1996) Zbl0847.65023MR1386889DOI10.1137/1.9781611971484
  2. Bunch, J. R., Nielsen, C. P., 10.1007/BF01397471, Numer. Math. 31 (1978), 111-129. (1978) Zbl0421.65028MR0509670DOI10.1007/BF01397471
  3. Bunch, J. R., Nielsen, C. P., Sorensen, D. C., 10.1007/BF01396012, Numer. Math. 31 (1978), 31-48. (1978) Zbl0369.65007MR0508586DOI10.1007/BF01396012
  4. Fierro, R. D., Golub, G. H., Hansen, P. C., O'Leary, D. P., 10.1137/S1064827594263837, SIAM J. Sci. Comput. 18 (1997), 1223-1241. (1997) Zbl0891.65040MR1453566DOI10.1137/S1064827594263837
  5. Golub, G. H., 10.1137/1015032, SIAM Rev. 15 (1973), 318-334. (1973) Zbl0254.65027MR0329227DOI10.1137/1015032
  6. Golub, G. H., Loan, C. F. Van, 10.1137/0717073, SIAM J. Numer. Anal. 17 (1980), 883-893. (1980) Zbl0468.65011MR0595451DOI10.1137/0717073
  7. Golub, G. H., Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore (2013). (2013) Zbl1268.65037MR3024913
  8. Hadamard, J., Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris (1932). (1932) Zbl0006.20501
  9. Hansen, P. C., 10.1137/1.9780898719697, SIAM Monographs on Mathematical Modeling and Computation 4, Society for Industrial and Applied Mathematics, Philadelphia (1998). (1998) Zbl0890.65037MR1486577DOI10.1137/1.9780898719697
  10. Hansen, P. C., 10.1137/1.9780898718836, Fundamentals of Algorithms 7, Society for Industrial and Applied Mathematics, Philadelphia (2010). (2010) Zbl1197.65054MR2584074DOI10.1137/1.9780898718836
  11. Hansen, P. C., Nagy, J. G., O'Leary, D. P., 10.1137/1.9780898718874, Fundamentals of Algorithms 3, Society for Industrial and Applied Mathematics, Philadelphia (2006). (2006) Zbl1112.68127MR2271138DOI10.1137/1.9780898718874
  12. Hansen, P. C., Pereyra, V., Scherer, G., Least Squares Data Fitting with Applications, Johns Hopkins University Press, Baltimore, (2013). (2013) Zbl1270.65008MR3012616
  13. Hnětynková, I., Plešinger, M., Sima, D. M., 10.1137/15M1028339, SIAM J. Matrix Anal. Appl. 37 (2016), 861-876. (2016) Zbl1343.15002MR3523076DOI10.1137/15M1028339
  14. Hnětynková, I., Plešinger, M., Sima, D. M., Strakoš, Z., Huffel, S. Van, 10.1137/100813348, SIAM J. Matrix Anal. Appl. 32 (2011), 748-770. (2011) Zbl1235.15016MR2825323DOI10.1137/100813348
  15. Hnětynková, I., Plešinger, M., Strakoš, Z., 10.1137/120884237, SIAM J. Matrix Anal. Appl. 34 (2013), 917-931. (2013) Zbl1279.65041MR3073354DOI10.1137/120884237
  16. Hnětynková, I., Plešinger, M., Strakoš, Z., 10.1137/140968914, SIAM J. Matrix Anal. Appl. 36 (2015), 417-434. (2015) Zbl1320.65057MR3335497DOI10.1137/140968914
  17. Natterer, F., 10.1007/978-3-663-01409-6, (1986). (1986) Zbl0617.92001MR0856916DOI10.1007/978-3-663-01409-6
  18. Huffel, S. Van, Vandewalle, J., 10.1137/1.9781611971002, Frontiers in Applied Mathematics 9, Society for Industrial and Applied Mathematics, Philadelphia (1991). (1991) Zbl0789.62054MR1118607DOI10.1137/1.9781611971002
  19. Wang, X.-F., 10.1080/03081087.2016.1189493, Linear Multilinear Algebra 65 (2017), 438-456. (2017) Zbl06687266MR3589611DOI10.1080/03081087.2016.1189493
  20. Wei, M., 10.1007/BF01396223, Numer. Math. 62 (1992), 123-148. (1992) Zbl0761.65030MR1159048DOI10.1007/BF01396223
  21. Wei, M., 10.1137/0613047, SIAM J. Matrix Anal. Appl. 13 (1992), 746-763. (1992) Zbl0758.65039MR1168020DOI10.1137/0613047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.