Page 1

Displaying 1 – 16 of 16

Showing per page

A homotopy approach to rational covariance extension with degree constraint

Per Enqvist (2001)

International Journal of Applied Mathematics and Computer Science

The solutions to the Rational Covariance Extension Problem (RCEP) are parameterized by the spectral zeros. The rational filter with a specified numerator solving the RCEP can be determined from a known convex optimization problem. However, this optimization problem may become ill-conditioned for some parameter values. A modification of the optimization problem to avoid the ill-conditioning is proposed and the modified problem is solved efficiently by a continuation method.

Filter factors of truncated TLS regularization with multiple observations

Iveta Hnětynková, Martin Plešinger, Jana Žáková (2017)

Applications of Mathematics

The total least squares (TLS) and truncated TLS (T-TLS) methods are widely known linear data fitting approaches, often used also in the context of very ill-conditioned, rank-deficient, or ill-posed problems. Regularization properties of T-TLS applied to linear approximation problems A x b were analyzed by Fierro, Golub, Hansen, and O’Leary (1997) through the so-called filter factors allowing to represent the solution in terms of a filtered pseudoinverse of A applied to b . This paper focuses on the situation...

On the choice of subspace for iterative methods for linear discrete ill-posed problems

Daniela Calvetti, Bryan Lewis, Lothar Reichel (2001)

International Journal of Applied Mathematics and Computer Science

Many iterative methods for the solution of linear discrete ill-posed problems with a large matrix require the computed approximate solutions to be orthogonal to the null space of the matrix. We show that when the desired solution is not smooth, it may be possible to determine meaningful approximate solutions with less computational work by not imposing this orthogonality condition.

Truncated spectral regularization for an ill-posed non-linear parabolic problem

Ajoy Jana, M. Thamban Nair (2019)

Czechoslovak Mathematical Journal

It is known that the nonlinear nonhomogeneous backward Cauchy problem u t ( t ) + A u ( t ) = f ( t , u ( t ) ) , 0 t < τ with u ( τ ) = φ , where A is a densely defined positive self-adjoint unbounded operator on a Hilbert space, is ill-posed in the sense that small perturbations in the final value can lead to large deviations in the solution. We show, under suitable conditions on φ and f , that a solution of the above problem satisfies an integral equation involving the spectral representation of A , which is also ill-posed. Spectral truncation is used...

Currently displaying 1 – 16 of 16

Page 1