Instrumental weighted variables under heteroscedasticity. Part II – Numerical study
Kybernetika (2017)
- Volume: 53, Issue: 1, page 26-58
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topVíšek, Jan Ámos. "Instrumental weighted variables under heteroscedasticity. Part II – Numerical study." Kybernetika 53.1 (2017): 26-58. <http://eudml.org/doc/287963>.
@article{Víšek2017,
abstract = {Results of a numerical study of the behavior of the instrumental weighted variables estimator – in a competition with two other estimators – are presented. The study was performed under various frameworks (homoscedsticity/heteroscedasticity, several level and types of contamination of data, fulfilled/broken orthogonality condition). At the beginning the optimal values of eligible parameters of estimatros in question were empirically established. It was done under the various sizes of data sets and various levels of the contamination of data. These values were then utilized in the numerical study. Its results indicate that instrumental weighted variables are as good as $S$- and $W$-estimators and under heteroscedasticity even better. The weight function of Tukey’s type was used.},
author = {Víšek, Jan Ámos},
journal = {Kybernetika},
keywords = {heteroscedasticity of disturbances; numerical study of instrumental weighted variables},
language = {eng},
number = {1},
pages = {26-58},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Instrumental weighted variables under heteroscedasticity. Part II – Numerical study},
url = {http://eudml.org/doc/287963},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Víšek, Jan Ámos
TI - Instrumental weighted variables under heteroscedasticity. Part II – Numerical study
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 1
SP - 26
EP - 58
AB - Results of a numerical study of the behavior of the instrumental weighted variables estimator – in a competition with two other estimators – are presented. The study was performed under various frameworks (homoscedsticity/heteroscedasticity, several level and types of contamination of data, fulfilled/broken orthogonality condition). At the beginning the optimal values of eligible parameters of estimatros in question were empirically established. It was done under the various sizes of data sets and various levels of the contamination of data. These values were then utilized in the numerical study. Its results indicate that instrumental weighted variables are as good as $S$- and $W$-estimators and under heteroscedasticity even better. The weight function of Tukey’s type was used.
LA - eng
KW - heteroscedasticity of disturbances; numerical study of instrumental weighted variables
UR - http://eudml.org/doc/287963
ER -
References
top- Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H., Tukey, J. W., Robust Estimates of Location: Survey and Advances., Princeton University Press, Princeton 1972. Zbl0254.62001MR0331595
- Antoch, J., Víšek, J. Á., 10.1007/978-3-642-99766-2_4, In: Contributions to Statistics: Computational Aspects of Model Choice (J. Antoch, ed.), Springer Verlag 1992, pp. 39-104. MR1210550DOI10.1007/978-3-642-99766-2_4
- Atkinson, A. C., Riani, M., Robust Diagnostic Regresion Analysis MR1884997
- Barndorff-Nielsen, O., Cox, D. R., Edgeworth and saddle-point approximations with statistical applications., J. Royal Statist. Soc. B 41 (1979), 3, 279-312. Zbl0424.62010MR0557595
- Benáček, V., Víšek, J. Á., Determining factors of trade specialization and growth of a small economy in transition. Impact of the EU opening-up on Czech exports and imports., IIASA, IR series, no. IR-03-001, 2002, pp. 1-41.
- Bickel, P. J., 10.2307/2285834, JASA 70 (1975), 428-433. Zbl0322.62038MR0386168DOI10.2307/2285834
- Campbell, N. A., Lopuhaa, H. P., Rousseeuw, P. J., 10.1002/(sici)1097-0258(19981215)17:23<2685::aid-sim35>3.3.co;2-n, Statist. Medcine 17 (1998), 2685-2695. DOI10.1002/(sici)1097-0258(19981215)17:23<2685::aid-sim35>3.3.co;2-n
- Chatterjee, S., Hadi, A. S., 10.1002/9780470316764, J. Wiley and Sons, New York 1988. Zbl0648.62066MR0939610DOI10.1002/9780470316764
- Čížek, P., 10.2139/ssrn.1382807, Center Discussion Paper 2009-25, Tilburg University 2009. Zbl1336.62108MR2456536DOI10.2139/ssrn.1382807
- Cohen-Freue, G. V., Ortiz-Molina, H., Zamar, R. H., 10.1111/biom.12043, Biometrics 69 (2013), 641-650. MR3106592DOI10.1111/biom.12043
- Desborges, R., Verardi, V., A robust instrumental-variable estimator., The Stata J. 12 (2012), 169-181.
- Edgeworth, F. Y., On observations relating to several quantities., Phil. Mag. (5th Series) 24 (1887), 222.
- Field, C. A., Ronchetti, E. M., Small Sample Asymptotics., Institute of Mathematical Statistics Monograph Series, Hayward 1990. Zbl0742.62016MR1088480
- J., D. Gervini V., Yohai, 10.1214/aos/1021379866, Annal Statist. 30 (2002), 583-616. Zbl1012.62073MR1902900DOI10.1214/aos/1021379866
- Halmos, P. R., 10.1007/978-1-4613-8127-3_2, In: Mathematics Tomorrow (L. Steen, ed.), Springer Verlag, New York 1981, pp. 9-20. MR0618280DOI10.1007/978-1-4613-8127-3_2
- Jurečková, J., 10.1007/978-94-009-7013-7_2, In: 9th Prague Conf. on Inform. Theory, Reidel 1983, pp. 19-32. MR0757722DOI10.1007/978-94-009-7013-7_2
- Jurečková, J., Sen, P. K., 10.1524/strm.1989.7.3.263, Statistics and Decisions 7 (1989), 263-276. Zbl0676.62056MR1029480DOI10.1524/strm.1989.7.3.263
- Jurečková, J., Malý, M., 10.1080/07474949508836334, Sequential Analysis 14 (1995), 229-245. Zbl0839.62075MR1365661DOI10.1080/07474949508836334
- Jurečková, J., Welsh, A. H., 10.1007/bf02481144, Ann. Inst. Statist. Math. 42 (1990), 671-698. Zbl0732.62027MR1089470DOI10.1007/bf02481144
- Koenker, R., Bassett, G., 10.2307/1913643, Econometrica 46 (1978), 33-50. Zbl0482.62023MR0474644DOI10.2307/1913643
- Maronna, R. A., Yohai, V. J., 10.1007/bf00536192, Z. Wahrscheinlichkeitstheorie verw. Gebiete 58 (1981), 7-20. MR0635268DOI10.1007/bf00536192
- Mašíček, L., Optimality of the least weighted squares estimator., Kybernetika 40 (2004), 715-734. Zbl1245.62013MR2120393
- Robinson, J., Saddle point approximations for permutation tests and confidence intervals., J. Roy. Statist. Soc. B 44 (1982), 1, 91-101. MR0655378
- Rousseeuw, P. J., 10.1007/978-94-009-5438-0_20, In: Proc. Fourth Pannonian Symposium on Mathematical Statistics, Bad Tatzmannsdorf 1983, pp. 283-297. Zbl0609.62054MR0851060DOI10.1007/978-94-009-5438-0_20
- Rousseeuw, P. J., 10.1080/01621459.1984.10477105, J. Amer. Statist. Association 79 (1984), 871-880. MR0770281DOI10.1080/01621459.1984.10477105
- Rousseeuw, P. J., Leroy, A. M., 10.1002/0471725382, J. Wiley and Sons, New York 1987. Zbl0711.62030MR0914792DOI10.1002/0471725382
- Rousseeuw, P. J., Yohai, V., 10.1007/978-1-4615-7821-5_15, In: Robust and Nonlinear Time Series Analysis (J. Franke, W. Härdle, and R. D. Martin, eds.), Lecture Notes in Statistics No. 26, Springer Verlag, New York 1984, pp. 256-272. MR0786313DOI10.1007/978-1-4615-7821-5_15
- Rubio, A. M., Víšek, J. Á., A note on asymptotic linearity of -statistics in non-linear models., Kybernetika 32 (1996), 353-374 MR1420128
- Siegel, A. F., 10.1093/biomet/69.1.242, Biometrica 69 (1982), 242-244. Zbl0483.62026DOI10.1093/biomet/69.1.242
- Verardi, V., McCathie, A., The -estimator of multivariate location and scatter in Stata., The Stata J. 12 (2012), 299-307.
- Welsh, A. H., 10.1214/aos/1176350064, Ann. Statist. 14 (1986), 1246-1251. MR0856820DOI10.1214/aos/1176350064
- Víšek, J. Á., On second order efficiency of a robust test and approximations of its error probabilities., Kybernetika 8 (1983), 3, 387-407. Zbl0531.62033MR0729030
- Víšek, J. Á., Estimating contamination level., In: Proc. Fifth Pannonian Symposium on Mathematical Statistics, Visegrád 1985, pp. 401-414. Zbl0662.62032MR0956715
- Víšek, J. Á., Robust instruments., In: Robust'98 (J. Antoch and G. Dohnal, eds.), Union of Czechoslovak Mathematicians and Physicists 1998, pp. 195-224.
- Víšek, J. Á., The robust regression and the experiences from its application on estimation of parameters in a dual economy., In: Proc. Conference Macromodels'99, Wroclaw University 1999, pp. 424-445.
- Víšek, J. Á., Regression with high breakdown point., In: ROBUST 2000 (J. Antoch and G. Dohnal, eds.), The Union of the Czech Mathematicians and Physicists and the Czech Statistical Society 2001, pp. 324-356.
- Víšek, J. Á., Character of the Czech economy in transition., In: Proc. The Czech society on the break of the third millennium, Karolinum, Publishing House of the Charles University 2000, pp. 181-205.
- Víšek, J. Á., The least trimmed squares. Part I - Consistency., Kybernetika 42 (2006), 1-36. MR2208518
- Víšek, J. Á., Robust error-term-scale estimate., IMS Coll., Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: Festschrift for Jana Jurečková 7 (2010), 254-267. MR2808385
- Víšek, J. Á., Least weighted squares with constraints and under heteroscedasticity., Bull. Czech Econometr. Soc. 20 (2012), 31, 21-54.
- Wooldridge, J. M., Introductory Econometrics. A Modern Approach., MIT Press, Cambridge 2006. Second edition 2009.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.