Instrumental weighted variables under heteroscedasticity. Part II – Numerical study

Jan Ámos Víšek

Kybernetika (2017)

  • Volume: 53, Issue: 1, page 26-58
  • ISSN: 0023-5954

Abstract

top
Results of a numerical study of the behavior of the instrumental weighted variables estimator – in a competition with two other estimators – are presented. The study was performed under various frameworks (homoscedsticity/heteroscedasticity, several level and types of contamination of data, fulfilled/broken orthogonality condition). At the beginning the optimal values of eligible parameters of estimatros in question were empirically established. It was done under the various sizes of data sets and various levels of the contamination of data. These values were then utilized in the numerical study. Its results indicate that instrumental weighted variables are as good as S - and W -estimators and under heteroscedasticity even better. The weight function of Tukey’s type was used.

How to cite

top

Víšek, Jan Ámos. "Instrumental weighted variables under heteroscedasticity. Part II – Numerical study." Kybernetika 53.1 (2017): 26-58. <http://eudml.org/doc/287963>.

@article{Víšek2017,
abstract = {Results of a numerical study of the behavior of the instrumental weighted variables estimator – in a competition with two other estimators – are presented. The study was performed under various frameworks (homoscedsticity/heteroscedasticity, several level and types of contamination of data, fulfilled/broken orthogonality condition). At the beginning the optimal values of eligible parameters of estimatros in question were empirically established. It was done under the various sizes of data sets and various levels of the contamination of data. These values were then utilized in the numerical study. Its results indicate that instrumental weighted variables are as good as $S$- and $W$-estimators and under heteroscedasticity even better. The weight function of Tukey’s type was used.},
author = {Víšek, Jan Ámos},
journal = {Kybernetika},
keywords = {heteroscedasticity of disturbances; numerical study of instrumental weighted variables},
language = {eng},
number = {1},
pages = {26-58},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Instrumental weighted variables under heteroscedasticity. Part II – Numerical study},
url = {http://eudml.org/doc/287963},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Víšek, Jan Ámos
TI - Instrumental weighted variables under heteroscedasticity. Part II – Numerical study
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 1
SP - 26
EP - 58
AB - Results of a numerical study of the behavior of the instrumental weighted variables estimator – in a competition with two other estimators – are presented. The study was performed under various frameworks (homoscedsticity/heteroscedasticity, several level and types of contamination of data, fulfilled/broken orthogonality condition). At the beginning the optimal values of eligible parameters of estimatros in question were empirically established. It was done under the various sizes of data sets and various levels of the contamination of data. These values were then utilized in the numerical study. Its results indicate that instrumental weighted variables are as good as $S$- and $W$-estimators and under heteroscedasticity even better. The weight function of Tukey’s type was used.
LA - eng
KW - heteroscedasticity of disturbances; numerical study of instrumental weighted variables
UR - http://eudml.org/doc/287963
ER -

References

top
  1. Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H., Tukey, J. W., Robust Estimates of Location: Survey and Advances., Princeton University Press, Princeton 1972. Zbl0254.62001MR0331595
  2. Antoch, J., Víšek, J. Á., 10.1007/978-3-642-99766-2_4, In: Contributions to Statistics: Computational Aspects of Model Choice (J. Antoch, ed.), Springer Verlag 1992, pp. 39-104. MR1210550DOI10.1007/978-3-642-99766-2_4
  3. Atkinson, A. C., Riani, M., Robust Diagnostic Regresion Analysis MR1884997
  4. Barndorff-Nielsen, O., Cox, D. R., Edgeworth and saddle-point approximations with statistical applications., J. Royal Statist. Soc. B 41 (1979), 3, 279-312. Zbl0424.62010MR0557595
  5. Benáček, V., Víšek, J. Á., Determining factors of trade specialization and growth of a small economy in transition. Impact of the EU opening-up on Czech exports and imports., IIASA, IR series, no. IR-03-001, 2002, pp. 1-41. 
  6. Bickel, P. J., 10.2307/2285834, JASA 70 (1975), 428-433. Zbl0322.62038MR0386168DOI10.2307/2285834
  7. Campbell, N. A., Lopuhaa, H. P., Rousseeuw, P. J., 10.1002/(sici)1097-0258(19981215)17:23<2685::aid-sim35>3.3.co;2-n, Statist. Medcine 17 (1998), 2685-2695. DOI10.1002/(sici)1097-0258(19981215)17:23<2685::aid-sim35>3.3.co;2-n
  8. Chatterjee, S., Hadi, A. S., 10.1002/9780470316764, J. Wiley and Sons, New York 1988. Zbl0648.62066MR0939610DOI10.1002/9780470316764
  9. Čížek, P., 10.2139/ssrn.1382807, Center Discussion Paper 2009-25, Tilburg University 2009. Zbl1336.62108MR2456536DOI10.2139/ssrn.1382807
  10. Cohen-Freue, G. V., Ortiz-Molina, H., Zamar, R. H., 10.1111/biom.12043, Biometrics 69 (2013), 641-650. MR3106592DOI10.1111/biom.12043
  11. Desborges, R., Verardi, V., A robust instrumental-variable estimator., The Stata J. 12 (2012), 169-181. 
  12. Edgeworth, F. Y., On observations relating to several quantities., Phil. Mag. (5th Series) 24 (1887), 222. 
  13. Field, C. A., Ronchetti, E. M., Small Sample Asymptotics., Institute of Mathematical Statistics Monograph Series, Hayward 1990. Zbl0742.62016MR1088480
  14. J., D. Gervini V., Yohai, 10.1214/aos/1021379866, Annal Statist. 30 (2002), 583-616. Zbl1012.62073MR1902900DOI10.1214/aos/1021379866
  15. Halmos, P. R., 10.1007/978-1-4613-8127-3_2, In: Mathematics Tomorrow (L. Steen, ed.), Springer Verlag, New York 1981, pp. 9-20. MR0618280DOI10.1007/978-1-4613-8127-3_2
  16. Jurečková, J., 10.1007/978-94-009-7013-7_2, In: 9th Prague Conf. on Inform. Theory, Reidel 1983, pp. 19-32. MR0757722DOI10.1007/978-94-009-7013-7_2
  17. Jurečková, J., Sen, P. K., 10.1524/strm.1989.7.3.263, Statistics and Decisions 7 (1989), 263-276. Zbl0676.62056MR1029480DOI10.1524/strm.1989.7.3.263
  18. Jurečková, J., Malý, M., 10.1080/07474949508836334, Sequential Analysis 14 (1995), 229-245. Zbl0839.62075MR1365661DOI10.1080/07474949508836334
  19. Jurečková, J., Welsh, A. H., 10.1007/bf02481144, Ann. Inst. Statist. Math. 42 (1990), 671-698. Zbl0732.62027MR1089470DOI10.1007/bf02481144
  20. Koenker, R., Bassett, G., 10.2307/1913643, Econometrica 46 (1978), 33-50. Zbl0482.62023MR0474644DOI10.2307/1913643
  21. Maronna, R. A., Yohai, V. J., 10.1007/bf00536192, Z. Wahrscheinlichkeitstheorie verw. Gebiete 58 (1981), 7-20. MR0635268DOI10.1007/bf00536192
  22. Mašíček, L., Optimality of the least weighted squares estimator., Kybernetika 40 (2004), 715-734. Zbl1245.62013MR2120393
  23. Robinson, J., Saddle point approximations for permutation tests and confidence intervals., J. Roy. Statist. Soc. B 44 (1982), 1, 91-101. MR0655378
  24. Rousseeuw, P. J., 10.1007/978-94-009-5438-0_20, In: Proc. Fourth Pannonian Symposium on Mathematical Statistics, Bad Tatzmannsdorf 1983, pp. 283-297. Zbl0609.62054MR0851060DOI10.1007/978-94-009-5438-0_20
  25. Rousseeuw, P. J., 10.1080/01621459.1984.10477105, J. Amer. Statist. Association 79 (1984), 871-880. MR0770281DOI10.1080/01621459.1984.10477105
  26. Rousseeuw, P. J., Leroy, A. M., 10.1002/0471725382, J. Wiley and Sons, New York 1987. Zbl0711.62030MR0914792DOI10.1002/0471725382
  27. Rousseeuw, P. J., Yohai, V., 10.1007/978-1-4615-7821-5_15, In: Robust and Nonlinear Time Series Analysis (J. Franke, W. Härdle, and R. D. Martin, eds.), Lecture Notes in Statistics No. 26, Springer Verlag, New York 1984, pp. 256-272. MR0786313DOI10.1007/978-1-4615-7821-5_15
  28. Rubio, A. M., Víšek, J. Á., A note on asymptotic linearity of M -statistics in non-linear models., Kybernetika 32 (1996), 353-374 MR1420128
  29. Siegel, A. F., 10.1093/biomet/69.1.242, Biometrica 69 (1982), 242-244. Zbl0483.62026DOI10.1093/biomet/69.1.242
  30. Verardi, V., McCathie, A., The S -estimator of multivariate location and scatter in Stata., The Stata J. 12 (2012), 299-307. 
  31. Welsh, A. H., 10.1214/aos/1176350064, Ann. Statist. 14 (1986), 1246-1251. MR0856820DOI10.1214/aos/1176350064
  32. Víšek, J. Á., On second order efficiency of a robust test and approximations of its error probabilities., Kybernetika 8 (1983), 3, 387-407. Zbl0531.62033MR0729030
  33. Víšek, J. Á., Estimating contamination level., In: Proc. Fifth Pannonian Symposium on Mathematical Statistics, Visegrád 1985, pp. 401-414. Zbl0662.62032MR0956715
  34. Víšek, J. Á., Robust instruments., In: Robust'98 (J. Antoch and G. Dohnal, eds.), Union of Czechoslovak Mathematicians and Physicists 1998, pp. 195-224. 
  35. Víšek, J. Á., The robust regression and the experiences from its application on estimation of parameters in a dual economy., In: Proc. Conference Macromodels'99, Wroclaw University 1999, pp. 424-445. 
  36. Víšek, J. Á., Regression with high breakdown point., In: ROBUST 2000 (J. Antoch and G. Dohnal, eds.), The Union of the Czech Mathematicians and Physicists and the Czech Statistical Society 2001, pp. 324-356. 
  37. Víšek, J. Á., Character of the Czech economy in transition., In: Proc. The Czech society on the break of the third millennium, Karolinum, Publishing House of the Charles University 2000, pp. 181-205. 
  38. Víšek, J. Á., The least trimmed squares. Part I - Consistency., Kybernetika 42 (2006), 1-36. MR2208518
  39. Víšek, J. Á., Robust error-term-scale estimate., IMS Coll., Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: Festschrift for Jana Jurečková 7 (2010), 254-267. MR2808385
  40. Víšek, J. Á., Least weighted squares with constraints and under heteroscedasticity., Bull. Czech Econometr. Soc. 20 (2012), 31, 21-54. 
  41. Wooldridge, J. M., Introductory Econometrics. A Modern Approach., MIT Press, Cambridge 2006. Second edition 2009. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.