The least trimmed squares. Part I: Consistency
Kybernetika (2006)
- Volume: 42, Issue: 1, page 1-36
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topVíšek, Jan Ámos. "The least trimmed squares. Part I: Consistency." Kybernetika 42.1 (2006): 1-36. <http://eudml.org/doc/33790>.
@article{Víšek2006,
abstract = {The consistency of the least trimmed squares estimator (see Rousseeuw [Rous] or Hampel et al. [HamRonRouSta]) is proved under general conditions. The assumptions employed in paper are discussed in details to clarify the consequences for the applications.},
author = {Víšek, Jan Ámos},
journal = {Kybernetika},
keywords = {robust regression; the least trimmed squares; consistency; discussion of assumptions and of algorithm for evaluation of estimator; robust regression},
language = {eng},
number = {1},
pages = {1-36},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The least trimmed squares. Part I: Consistency},
url = {http://eudml.org/doc/33790},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Víšek, Jan Ámos
TI - The least trimmed squares. Part I: Consistency
JO - Kybernetika
PY - 2006
PB - Institute of Information Theory and Automation AS CR
VL - 42
IS - 1
SP - 1
EP - 36
AB - The consistency of the least trimmed squares estimator (see Rousseeuw [Rous] or Hampel et al. [HamRonRouSta]) is proved under general conditions. The assumptions employed in paper are discussed in details to clarify the consequences for the applications.
LA - eng
KW - robust regression; the least trimmed squares; consistency; discussion of assumptions and of algorithm for evaluation of estimator; robust regression
UR - http://eudml.org/doc/33790
ER -
References
top- Andrews D. W. K., 10.2307/1913568, Econometrica 55 (1987), 1465–1471 (1987) Zbl0646.62101MR0923471DOI10.2307/1913568
- Bickel P. J., 10.1080/01621459.1975.10479884, J. Amer. Statist. Assoc. 70 (1975), 428–433 (1975) Zbl0322.62038MR0386168DOI10.1080/01621459.1975.10479884
- Breiman L., Probability, Addison–Wesley, London 1968 Zbl0753.60001MR0229267
- Chatterjee S., Hadi A. S., Sensitivity Analysis in Linear Regression, Wiley, New York 1988 Zbl0648.62066MR0939610
- Csőrgő M., Révész P., Strong Approximation in Probability and Statistics, Akademia Kiadó, Budapest 1981 MR0666546
- Dhrymes P. J., Introductory Econometrics, Springer–Verlag, New York 1978 Zbl0388.62096MR0545505
- Jurečková J., Sen P. K., Regression rank scores scale statistics and studentization in linear models, In: Proc. Fifth Prague Symposium on Asymptotic Statistics, Physica Verlag, Heidelberg 1993, pp. 111–121 (1993) MR1311932
- Hampel F. R., Ronchetti E. M., Rousseeuw P. J., Stahel W. A., Robust Statistics – The Approach Based on Influence Functions, Wiley, New York 1986 Zbl0733.62038MR0829458
- Hettmansperger T. P., Sheather S. J., A cautionary note on the method of least median squares, Amer. Statist. 46 (1992), 79–83 (1992) MR1165565
- Liese F., Vajda I., 10.1006/jmva.1994.1036, J. Multivar. Anal. 50 (1994), 93–114 (1994) MR1292610DOI10.1006/jmva.1994.1036
- Portnoy S., Tightness of the sequence of empiric c, d.f. processes defined from regression fractiles. In: Robust and Nonlinear Time-Series Analysis (J. Franke, W. Härdle, and D. Martin, eds.), Springer–Verlag, New York 1983, pp. 231–246 (1983) MR0786311
- Prigogine I., Stengers I., La Nouvelle Alliance, SCIENTIA 1977, Issues 5–12 (1977)
- Prigogine I., Stengers I., Out of Chaos, William Heinemann Ltd, London 1984 MR0102205
- Rousseeuw P. J., 10.1080/01621459.1984.10477105, J. Amer. Statist. Assoc. 79 (1984), 871–880 (1984) MR0770281DOI10.1080/01621459.1984.10477105
- Rousseeuw P. J., Leroy A. M., Robust Regression and Outlier Detection, Wiley, New York 1987 Zbl0711.62030MR0914792
- Rubio A. M., Víšek J. Á., A note on asymptotic linearity of -statistics in nonlinear models, Kybernetika 32 (1996), 353–374 (1996) Zbl0882.62053MR1420128
- Rubio A. M., Víšek J. Á., Estimating the contamination level of data in the framework of linear regression analysis, Qüestiió 21 (1997), 9–36 (1997) Zbl1167.62388MR1476149
- Štěpán J., Teorie pravděpodobnosti (Probability Theory), Academia, Prague 1987
- Huffel S. Van, Total least squares and error-in-variables modelling: Bridging the gap between statistics, computational mathematics and enginnering, In: Proc. Computational Statistics, COMPSTAT 2004 (J. Antoch, ed.), Physica–Verlag, Springer 2004, pp. 539–555 MR2173049
- Víšek J. Á., On high breakdown point estimation, Comput. Statistics 11 (1996), 137–146 (1996) Zbl0933.62015MR1394545
- Víšek J. Á., 10.1007/BF00050849, Ann. Inst. Statist. Math. 48 (1996), 469–495 (1996) MR1424776DOI10.1007/BF00050849
- Víšek J. Á., Ekonometrie I (Econometrics I), Carolinum, Publishing House of Charles University, Prague 1997
- Víšek J. Á., Robust specification test, In: Proc. Prague Stochastics’98 (M. Hušková, P. Lachout, and J. Á. Víšek, eds.), Union of Czechoslovak Mathematicians and Physicists, Prague 1998, pp. 581–586 (1998)
- Víšek J. Á., Robust instruments, In: Robust’98 (J. Antoch and G. Dohnal, eds.), Union of Czechoslovak Mathematicians and Physicists, Prague 1998, pp. 195–224 (1998)
- Víšek J. Á., Robust estimation of regression model, Bull. Czech Econometric Society 9 (1999), 57–79 (1999)
- Víšek J. Á., The least trimmed squares – random carriers, Bull. Czech Econometric Society 10 (1999), 1–30 (1999)
- Víšek J. Á., The robust regression and the experiences from its application on estimation of parameters in a dual economy, In: Proc. Macromodels’99, Rydzyna 1999, pp. 424–445 (1999)
- Víšek J. Á., 10.1016/S0167-9473(99)00068-7, Comput. Statist. Data Anal. 34 (2000) 67–89 Zbl1052.62509DOI10.1016/S0167-9473(99)00068-7
- Víšek J. Á., Regression with high breakdown point, In: Robust 2000 (J. Antoch and G. Dohnal, eds.), Union of Czechoslovak Mathematicians and Physicists, Prague 2001, pp. 324–356
- Víšek J. Á., A new paradigm of point estimation, In: Proc. Data Analysis 2000/II, Modern Statistical Methods – Modelling, Regression, Classification and Data Mining (K. Kupka, ed.), TRYLOBITE, Pardubice 2000, 195–230
- Víšek J. Á., 10.1023/A:1022465701229, Ann. Inst. Statist. Math. 54 (2002), 2, 261–290 Zbl1013.62072MR1910173DOI10.1023/A:1022465701229
- Víšek J. Á., -consistency of empirical distribution function of residuals in linear regression model, Probab. Lett., submitted
- Zvára K., Regresní analýza (Regression Analysis), Academia, Prague 1989
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.