On projectional skeletons in Vašák spaces

Ondřej F. K. Kalenda

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Volume: 58, Issue: 2, page 173-182
  • ISSN: 0010-2628

Abstract

top
We provide an alternative proof of the theorem saying that any Vašák (or, weakly countably determined) Banach space admits a full 1 -projectional skeleton. The proof is done with the use of the method of elementary submodels and is comparably simple as the proof given by W. Kubiś (2009) in case of weakly compactly generated spaces.

How to cite

top

Kalenda, Ondřej F. K.. "On projectional skeletons in Vašák spaces." Commentationes Mathematicae Universitatis Carolinae 58.2 (2017): 173-182. <http://eudml.org/doc/288186>.

@article{Kalenda2017,
abstract = {We provide an alternative proof of the theorem saying that any Vašák (or, weakly countably determined) Banach space admits a full $1$-projectional skeleton. The proof is done with the use of the method of elementary submodels and is comparably simple as the proof given by W. Kubiś (2009) in case of weakly compactly generated spaces.},
author = {Kalenda, Ondřej F. K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Vašák Banach space; projectional skeleton; elementary submodel},
language = {eng},
number = {2},
pages = {173-182},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On projectional skeletons in Vašák spaces},
url = {http://eudml.org/doc/288186},
volume = {58},
year = {2017},
}

TY - JOUR
AU - Kalenda, Ondřej F. K.
TI - On projectional skeletons in Vašák spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 2
SP - 173
EP - 182
AB - We provide an alternative proof of the theorem saying that any Vašák (or, weakly countably determined) Banach space admits a full $1$-projectional skeleton. The proof is done with the use of the method of elementary submodels and is comparably simple as the proof given by W. Kubiś (2009) in case of weakly compactly generated spaces.
LA - eng
KW - Vašák Banach space; projectional skeleton; elementary submodel
UR - http://eudml.org/doc/288186
ER -

References

top
  1. Amir D., Lindenstrauss J., 10.2307/1970554, Ann. of Math. 88 (1968), no. 2, 35–46. Zbl0164.14903MR0228983DOI10.2307/1970554
  2. Bohata M., Hamhalter J., Kalenda O., 10.1016/j.jmaa.2016.08.031, J. Math. Anal. Appl. 446 (2017), no. 1, 18–37. MR3554714DOI10.1016/j.jmaa.2016.08.031
  3. Cúth M., 10.4064/fm219-3-1, Fund. Math. 219 (2012), no. 3, 191–222. Zbl1270.46015MR3001239DOI10.4064/fm219-3-1
  4. Cúth M., Kalenda O.F.K., Rich families and elementary submodels, Cent. Eur. J. Math. 12 (2014), no. 7, 1026–1039. Zbl1323.46014MR3188463
  5. Cúth M., Kalenda O.F.K., 10.1016/j.jmaa.2014.09.029, J. Math. Anal. Appl. 423 (2015), no. 1, 18–31. Zbl1312.54005MR3273164DOI10.1016/j.jmaa.2014.09.029
  6. Cúth M., Rmoutil M., Zelený M., 10.1016/j.topol.2014.11.005, Topology Appl. 180 (2015), 64–84. MR3293266DOI10.1016/j.topol.2014.11.005
  7. Dow A., An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), no. 1, 17–72. Zbl0696.03024MR1031969
  8. Fabian M., Godefroy G., 10.4064/sm-91-2-141-151, Studia Math. 91 (1988), no. 2, 141–151. Zbl0692.46012MR0985081DOI10.4064/sm-91-2-141-151
  9. Fabian M.J., Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1997. Zbl0883.46011MR1461271
  10. Gul'ko S.P., The structure of spaces of continuous functions and their hereditary paracompactness, Uspekhi Mat. Nauk 34 (1979), no. 6(210), 33–40. MR0562814
  11. Kechris A.S., Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer, New York, 1995. Zbl0819.04002MR1321597
  12. Koszmider P., 10.1515/JAA.2005.187, J. Appl. Anal. 11 (2005), no. 2, 187–205. Zbl1101.46013MR2195512DOI10.1515/JAA.2005.187
  13. Kubiś W., 10.1016/j.jmaa.2008.07.006, J. Math. Anal. Appl. 350 (2009), no. 2, 758–776. Zbl1166.46008MR2474810DOI10.1016/j.jmaa.2008.07.006
  14. Kunen K., Set Theory. An Introduction to Independence Proofs, reprint of the 1980 original, Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam, 1983. Zbl0534.03026MR0756630
  15. Mercourakis S., 10.1090/S0002-9947-1987-0871678-1, Trans. Amer. Math. Soc. 300 (1987), no. 1, 307–327. Zbl0621.46018MR0871678DOI10.1090/S0002-9947-1987-0871678-1
  16. Orihuela J., Valdivia M., Projective generators and resolutions of identity in Banach spaces, Congress on Functional Analysis (Madrid, 1988), Rev. Mat. Univ. Complut. Madrid 2 (1989), suppl., 179–199. Zbl0717.46009MR1057218
  17. Valdivia M., Resolutions of the identity in certain Banach spaces, Collect. Math. 39 (1988), no. 2, 127–140. Zbl0718.46006MR1027683
  18. Valdivia M., Simultaneous resolutions of the identity operator in normed spaces, Collect. Math. 42 (1991), no. 3, 265–284 (1992). Zbl0788.47024MR1203185
  19. Vašák L., 10.4064/sm-70-1-11-19, Studia Math. 70 (1981), no. 1, 11–19. Zbl0376.46012MR0646957DOI10.4064/sm-70-1-11-19

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.