On projectional skeletons in Vašák spaces
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 2, page 173-182
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKalenda, Ondřej F. K.. "On projectional skeletons in Vašák spaces." Commentationes Mathematicae Universitatis Carolinae 58.2 (2017): 173-182. <http://eudml.org/doc/288186>.
@article{Kalenda2017,
abstract = {We provide an alternative proof of the theorem saying that any Vašák (or, weakly countably determined) Banach space admits a full $1$-projectional skeleton. The proof is done with the use of the method of elementary submodels and is comparably simple as the proof given by W. Kubiś (2009) in case of weakly compactly generated spaces.},
author = {Kalenda, Ondřej F. K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Vašák Banach space; projectional skeleton; elementary submodel},
language = {eng},
number = {2},
pages = {173-182},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On projectional skeletons in Vašák spaces},
url = {http://eudml.org/doc/288186},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Kalenda, Ondřej F. K.
TI - On projectional skeletons in Vašák spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 2
SP - 173
EP - 182
AB - We provide an alternative proof of the theorem saying that any Vašák (or, weakly countably determined) Banach space admits a full $1$-projectional skeleton. The proof is done with the use of the method of elementary submodels and is comparably simple as the proof given by W. Kubiś (2009) in case of weakly compactly generated spaces.
LA - eng
KW - Vašák Banach space; projectional skeleton; elementary submodel
UR - http://eudml.org/doc/288186
ER -
References
top- Amir D., Lindenstrauss J., 10.2307/1970554, Ann. of Math. 88 (1968), no. 2, 35–46. Zbl0164.14903MR0228983DOI10.2307/1970554
- Bohata M., Hamhalter J., Kalenda O., 10.1016/j.jmaa.2016.08.031, J. Math. Anal. Appl. 446 (2017), no. 1, 18–37. MR3554714DOI10.1016/j.jmaa.2016.08.031
- Cúth M., 10.4064/fm219-3-1, Fund. Math. 219 (2012), no. 3, 191–222. Zbl1270.46015MR3001239DOI10.4064/fm219-3-1
- Cúth M., Kalenda O.F.K., Rich families and elementary submodels, Cent. Eur. J. Math. 12 (2014), no. 7, 1026–1039. Zbl1323.46014MR3188463
- Cúth M., Kalenda O.F.K., 10.1016/j.jmaa.2014.09.029, J. Math. Anal. Appl. 423 (2015), no. 1, 18–31. Zbl1312.54005MR3273164DOI10.1016/j.jmaa.2014.09.029
- Cúth M., Rmoutil M., Zelený M., 10.1016/j.topol.2014.11.005, Topology Appl. 180 (2015), 64–84. MR3293266DOI10.1016/j.topol.2014.11.005
- Dow A., An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), no. 1, 17–72. Zbl0696.03024MR1031969
- Fabian M., Godefroy G., 10.4064/sm-91-2-141-151, Studia Math. 91 (1988), no. 2, 141–151. Zbl0692.46012MR0985081DOI10.4064/sm-91-2-141-151
- Fabian M.J., Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1997. Zbl0883.46011MR1461271
- Gul'ko S.P., The structure of spaces of continuous functions and their hereditary paracompactness, Uspekhi Mat. Nauk 34 (1979), no. 6(210), 33–40. MR0562814
- Kechris A.S., Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer, New York, 1995. Zbl0819.04002MR1321597
- Koszmider P., 10.1515/JAA.2005.187, J. Appl. Anal. 11 (2005), no. 2, 187–205. Zbl1101.46013MR2195512DOI10.1515/JAA.2005.187
- Kubiś W., 10.1016/j.jmaa.2008.07.006, J. Math. Anal. Appl. 350 (2009), no. 2, 758–776. Zbl1166.46008MR2474810DOI10.1016/j.jmaa.2008.07.006
- Kunen K., Set Theory. An Introduction to Independence Proofs, reprint of the 1980 original, Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam, 1983. Zbl0534.03026MR0756630
- Mercourakis S., 10.1090/S0002-9947-1987-0871678-1, Trans. Amer. Math. Soc. 300 (1987), no. 1, 307–327. Zbl0621.46018MR0871678DOI10.1090/S0002-9947-1987-0871678-1
- Orihuela J., Valdivia M., Projective generators and resolutions of identity in Banach spaces, Congress on Functional Analysis (Madrid, 1988), Rev. Mat. Univ. Complut. Madrid 2 (1989), suppl., 179–199. Zbl0717.46009MR1057218
- Valdivia M., Resolutions of the identity in certain Banach spaces, Collect. Math. 39 (1988), no. 2, 127–140. Zbl0718.46006MR1027683
- Valdivia M., Simultaneous resolutions of the identity operator in normed spaces, Collect. Math. 42 (1991), no. 3, 265–284 (1992). Zbl0788.47024MR1203185
- Vašák L., 10.4064/sm-70-1-11-19, Studia Math. 70 (1981), no. 1, 11–19. Zbl0376.46012MR0646957DOI10.4064/sm-70-1-11-19
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.