Extensions of hom-Lie algebras in terms of cohomology
Abdoreza R. Armakan; Mohammed Reza Farhangdoost
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 2, page 317-328
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topArmakan, Abdoreza R., and Farhangdoost, Mohammed Reza. "Extensions of hom-Lie algebras in terms of cohomology." Czechoslovak Mathematical Journal 67.2 (2017): 317-328. <http://eudml.org/doc/288215>.
@article{Armakan2017,
abstract = {We study (non-abelian) extensions of a given hom-Lie algebra and provide a geometrical interpretation of extensions, in particular, we characterize an extension of a hom-Lie algebra $\mathfrak \{g\}$ by another hom-Lie algebra $\mathfrak \{h\}$ and discuss the case where $\mathfrak \{h\}$ has no center. We also deal with the setting of covariant exterior derivatives, Chevalley derivative, Maurer-Cartan formula, curvature and the Bianchi identity for the possible extensions in differential geometry. Moreover, we find a cohomological obstruction to the existence of extensions of hom-Lie algebras, i.e., we show that in order to have an extendible hom-Lie algebra, there should exist a trivial member of the third cohomology.},
author = {Armakan, Abdoreza R., Farhangdoost, Mohammed Reza},
journal = {Czechoslovak Mathematical Journal},
keywords = {hom-Lie algebras; cohomology of hom-Lie algebras; extensions of hom-Lie algebras},
language = {eng},
number = {2},
pages = {317-328},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extensions of hom-Lie algebras in terms of cohomology},
url = {http://eudml.org/doc/288215},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Armakan, Abdoreza R.
AU - Farhangdoost, Mohammed Reza
TI - Extensions of hom-Lie algebras in terms of cohomology
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 317
EP - 328
AB - We study (non-abelian) extensions of a given hom-Lie algebra and provide a geometrical interpretation of extensions, in particular, we characterize an extension of a hom-Lie algebra $\mathfrak {g}$ by another hom-Lie algebra $\mathfrak {h}$ and discuss the case where $\mathfrak {h}$ has no center. We also deal with the setting of covariant exterior derivatives, Chevalley derivative, Maurer-Cartan formula, curvature and the Bianchi identity for the possible extensions in differential geometry. Moreover, we find a cohomological obstruction to the existence of extensions of hom-Lie algebras, i.e., we show that in order to have an extendible hom-Lie algebra, there should exist a trivial member of the third cohomology.
LA - eng
KW - hom-Lie algebras; cohomology of hom-Lie algebras; extensions of hom-Lie algebras
UR - http://eudml.org/doc/288215
ER -
References
top- Ammar, F., Ejbehi, Z., Makhlouf, A., Cohomology and deformations of Hom-algebras, J. Lie Theory 21 (2011), 813-836. (2011) Zbl1237.17003MR2917693
- Anderson, F. W., Fuller, K. R., 10.1007/978-1-4612-4418-9, Graduate Texts in Mathematics 13, Springer, New York (1992). (1992) Zbl0765.16001MR1245487DOI10.1007/978-1-4612-4418-9
- Benayadi, S., Makhlouf, A., 10.1016/j.geomphys.2013.10.010, J. Geom. Phys. 76 (2014), 38-60. (2014) Zbl1331.17028MR3144357DOI10.1016/j.geomphys.2013.10.010
- Casas, J. M., Insua, M. A., Pacheco, N., On universal central extensions of Hom-Lie algebras, Hacet. J. Math. Stat. 44 (2015), 277-288. (2015) Zbl1344.17003MR3381108
- Hartwig, J. T., Larsson, D., Silvestrov, S. D., 10.1016/j.jalgebra.2005.07.036, J. Algebra 295 (2006), 314-361. (2006) Zbl1138.17012MR2194957DOI10.1016/j.jalgebra.2005.07.036
- Kolář, I., Michor, P. W., Slovák, J., 10.1007/978-3-662-02950-3, Springer, Berlin (corrected electronic version) (1993). (1993) Zbl0782.53013MR1202431DOI10.1007/978-3-662-02950-3
- Makhlouf, A., Silvestrov, S. D., 10.4303/jglta/S070206, J. Gen. Lie Theory Appl. 2 (2008), 51-64. (2008) Zbl1184.17002MR2399415DOI10.4303/jglta/S070206
- Makhlouf, A., Silvestrov, S., 10.1515/FORUM.2010.040, Forum Math. 22 (2010), 715-739. (2010) Zbl1201.17012MR2661446DOI10.1515/FORUM.2010.040
- Sheng, Y., 10.1007/s10468-011-9280-8, Algebr. Represent. Theory 15 (2012), 1081-1098. (2012) Zbl1294.17001MR2994017DOI10.1007/s10468-011-9280-8
- Sheng, Y., Chen, D., 10.1016/j.jalgebra.2012.11.032, J. Algebra 376 (2013), 174-195. (2013) Zbl1281.17034MR3003723DOI10.1016/j.jalgebra.2012.11.032
- Sheng, Y., Xiong, Z., 10.1080/03081087.2015.1010473, Linear Multilinear Algebra 63 (2015), 2379-2395. (2015) Zbl06519840MR3402544DOI10.1080/03081087.2015.1010473
- Yau, D., 10.4303/jglta/S070209, J. Gen. Lie Theory Appl. 2 (2008), 95-108. (2008) Zbl1214.17001MR2399418DOI10.4303/jglta/S070209
- Yau, D., 10.1088/1751-8113/42/16/165202, J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. (2009) Zbl1179.17001MR2539278DOI10.1088/1751-8113/42/16/165202
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.