H-anti-invariant submersions from almost quaternionic Hermitian manifolds

Kwang-Soon Park

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 2, page 557-578
  • ISSN: 0011-4642

Abstract

top
As a generalization of anti-invariant Riemannian submersions and Lagrangian Riemannian submersions, we introduce the notions of h-anti-invariant submersions and h-Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We obtain characterizations and investigate some properties: the integrability of distributions, the geometry of foliations, and the harmonicity of such maps. We also find a condition for such maps to be totally geodesic and give some examples of such maps. Finally, we obtain some types of decomposition theorems.

How to cite

top

Park, Kwang-Soon. "H-anti-invariant submersions from almost quaternionic Hermitian manifolds." Czechoslovak Mathematical Journal 67.2 (2017): 557-578. <http://eudml.org/doc/288224>.

@article{Park2017,
abstract = {As a generalization of anti-invariant Riemannian submersions and Lagrangian Riemannian submersions, we introduce the notions of h-anti-invariant submersions and h-Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We obtain characterizations and investigate some properties: the integrability of distributions, the geometry of foliations, and the harmonicity of such maps. We also find a condition for such maps to be totally geodesic and give some examples of such maps. Finally, we obtain some types of decomposition theorems.},
author = {Park, Kwang-Soon},
journal = {Czechoslovak Mathematical Journal},
keywords = {Riemannian submersion; Lagrangian Riemannian submersion; decomposition theorem; totally geodesic},
language = {eng},
number = {2},
pages = {557-578},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {H-anti-invariant submersions from almost quaternionic Hermitian manifolds},
url = {http://eudml.org/doc/288224},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Park, Kwang-Soon
TI - H-anti-invariant submersions from almost quaternionic Hermitian manifolds
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 557
EP - 578
AB - As a generalization of anti-invariant Riemannian submersions and Lagrangian Riemannian submersions, we introduce the notions of h-anti-invariant submersions and h-Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We obtain characterizations and investigate some properties: the integrability of distributions, the geometry of foliations, and the harmonicity of such maps. We also find a condition for such maps to be totally geodesic and give some examples of such maps. Finally, we obtain some types of decomposition theorems.
LA - eng
KW - Riemannian submersion; Lagrangian Riemannian submersion; decomposition theorem; totally geodesic
UR - http://eudml.org/doc/288224
ER -

References

top
  1. Altafini, C., 10.1109/tra.2004.824636, IEEE Transactions on Robotics and Automation 20 (2004), 335-340. (2004) DOI10.1109/tra.2004.824636
  2. Alekseevsky, D. V., Marchiafava, S., Almost complex submanifolds of quaternionic manifolds, Steps in differential geometry Kozma, L. et al. Proc. of the colloquium on differential geometry, Debrecen, 2000, Inst. Math. Inform. Debrecen (2001), 23-38. (2001) Zbl1037.53029MR1859285
  3. Baird, P., Wood, J. C., 10.1093/acprof:oso/9780198503620.001.0001, London Mathematical Society Monographs, New Series 29, Oxford University Press, Oxford (2003). (2003) Zbl1055.53049MR2044031DOI10.1093/acprof:oso/9780198503620.001.0001
  4. Besse, A. L., 10.1007/978-3-540-74311-8, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin (1987). (1987) Zbl0613.53001MR0867684DOI10.1007/978-3-540-74311-8
  5. Bourguignon, J.-P., A mathematician's visit to Kaluza-Klein theory, Conf. on Partial Differential Equations and Geometry, Torino, 1988, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 143-163. (1989) Zbl0717.53062MR1086213
  6. Bourguignon, J. P., Jr., H. B. Lawson, 10.1007/bf01942061, Commum. Math. Phys. 79 (1981), 189-230. (1981) Zbl0475.53060MR0612248DOI10.1007/bf01942061
  7. Chinea, D., 10.1007/BF02844887, Rend. Circ. Mat. Palermo II. Ser. 34 (1985), 89-104. (1985) Zbl0572.53033MR0790818DOI10.1007/BF02844887
  8. Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F., 10.1088/1126-6708/2004/03/028, J. High Energy Phys. (electronic) 3 (2004), no. 028, 73 pages. (2004) MR2061551DOI10.1088/1126-6708/2004/03/028
  9. Falcitelli, M., Ianus, S., Pastore, A. M., 10.1142/5568, World Scientific Publishing, River Edge (2004). (2004) Zbl1067.53016MR2110043DOI10.1142/5568
  10. Gray, A., Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715-737. (1967) Zbl0147.21201MR0205184
  11. Ianuş, S., Mazzocco, R., lcu, G. E. Vî, 10.1007/s10440-008-9241-3, Acta. Appl. Math. 104 (2008), 83-89. (2008) Zbl1151.53329MR2434668DOI10.1007/s10440-008-9241-3
  12. Ianus, S., Vişinescu, M., 10.1088/0264-9381/4/5/026, Classical Quantum Gravity 4 (1987), 1317-1325. (1987) Zbl0629.53072MR0905571DOI10.1088/0264-9381/4/5/026
  13. Ianus, S., Visinescu, M., 10.1142/9789814503457_0026, The Mathematical Heritage of C. F. Gauss, Collect. Pap. Mem. C. F. Gauss, World Sci. Publ., River Edge (1991), 358-371. (1991) Zbl0765.53064MR1146240DOI10.1142/9789814503457_0026
  14. Marrero, J. C., Rocha, J., 10.1007/BF01278477, Geom. Dedicata 52 (1994), 271-289. (1994) Zbl0810.53054MR1299880DOI10.1007/BF01278477
  15. Mémoli, F., Sapiro, G., Thompson, P., 10.1016/j.neuroimage.2004.07.072, NeuroImage 23 (2004), 179-188. (2004) DOI10.1016/j.neuroimage.2004.07.072
  16. Mustafa, M. T., 10.1063/1.1290381, J. Math. Phys. 41 (2000), 6918-6929. (2000) Zbl0974.58017MR1781415DOI10.1063/1.1290381
  17. O'Neill, B., 10.1307/mmj/1028999604, Mich. Math. J. 13 (1966), 458-469. (1966) Zbl0145.18602MR0200865DOI10.1307/mmj/1028999604
  18. Park, K.-S., 10.11650/twjm/1500406802, Taiwanese J. Math. 16 (2012), 1865-1878. (2012) Zbl1262.53028MR2970690DOI10.11650/twjm/1500406802
  19. Park, K.-S., 10.4134/BKMS.2012.49.2.329, Bull. Korean Math. Soc. 49 (2012), 329-338. (2012) Zbl1237.53016MR2934483DOI10.4134/BKMS.2012.49.2.329
  20. Park, K.-S., 10.11650/tjm.18.2014.4079, Taiwanese J. Math. 18 (2014), 1909-1926. (2014) Zbl06693490MR3284038DOI10.11650/tjm.18.2014.4079
  21. Ponge, R., Reckziegel, H., 10.1007/BF01265674, Geom. Dedicata 48 (1993), 15-25. (1993) Zbl0792.53026MR1245571DOI10.1007/BF01265674
  22. 10.2478/s11533-010-0023-6, Cent. Eur. J. Math. 8 (2010), 437-447. (2010) Zbl1207.53036MR2653653DOI10.2478/s11533-010-0023-6
  23. Şahin, B., 10.11650/tjm.17.2013.2191, Taiwanese J. Math. 17 (2013), 629-659. (2013) Zbl1286.53041MR3044527DOI10.11650/tjm.17.2013.2191
  24. Watson, B., 10.4310/jdg/1214433303, J. Differ. Geom. 11 (1976), 147-165. (1976) Zbl0355.53037MR0407784DOI10.4310/jdg/1214433303
  25. Watson, B., G , G ' -Riemannian submersions and non-linear gauge field equations of general relativity, Global Analysis -- Analysis on Manifolds Teubner-Texte Math. 57, Teubner, Leipzig (1983), 324-349. (1983) Zbl0525.53052MR0730623

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.