H-anti-invariant submersions from almost quaternionic Hermitian manifolds
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 2, page 557-578
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPark, Kwang-Soon. "H-anti-invariant submersions from almost quaternionic Hermitian manifolds." Czechoslovak Mathematical Journal 67.2 (2017): 557-578. <http://eudml.org/doc/288224>.
@article{Park2017,
abstract = {As a generalization of anti-invariant Riemannian submersions and Lagrangian Riemannian submersions, we introduce the notions of h-anti-invariant submersions and h-Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We obtain characterizations and investigate some properties: the integrability of distributions, the geometry of foliations, and the harmonicity of such maps. We also find a condition for such maps to be totally geodesic and give some examples of such maps. Finally, we obtain some types of decomposition theorems.},
author = {Park, Kwang-Soon},
journal = {Czechoslovak Mathematical Journal},
keywords = {Riemannian submersion; Lagrangian Riemannian submersion; decomposition theorem; totally geodesic},
language = {eng},
number = {2},
pages = {557-578},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {H-anti-invariant submersions from almost quaternionic Hermitian manifolds},
url = {http://eudml.org/doc/288224},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Park, Kwang-Soon
TI - H-anti-invariant submersions from almost quaternionic Hermitian manifolds
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 557
EP - 578
AB - As a generalization of anti-invariant Riemannian submersions and Lagrangian Riemannian submersions, we introduce the notions of h-anti-invariant submersions and h-Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We obtain characterizations and investigate some properties: the integrability of distributions, the geometry of foliations, and the harmonicity of such maps. We also find a condition for such maps to be totally geodesic and give some examples of such maps. Finally, we obtain some types of decomposition theorems.
LA - eng
KW - Riemannian submersion; Lagrangian Riemannian submersion; decomposition theorem; totally geodesic
UR - http://eudml.org/doc/288224
ER -
References
top- Altafini, C., 10.1109/tra.2004.824636, IEEE Transactions on Robotics and Automation 20 (2004), 335-340. (2004) DOI10.1109/tra.2004.824636
- Alekseevsky, D. V., Marchiafava, S., Almost complex submanifolds of quaternionic manifolds, Steps in differential geometry Kozma, L. et al. Proc. of the colloquium on differential geometry, Debrecen, 2000, Inst. Math. Inform. Debrecen (2001), 23-38. (2001) Zbl1037.53029MR1859285
- Baird, P., Wood, J. C., 10.1093/acprof:oso/9780198503620.001.0001, London Mathematical Society Monographs, New Series 29, Oxford University Press, Oxford (2003). (2003) Zbl1055.53049MR2044031DOI10.1093/acprof:oso/9780198503620.001.0001
- Besse, A. L., 10.1007/978-3-540-74311-8, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin (1987). (1987) Zbl0613.53001MR0867684DOI10.1007/978-3-540-74311-8
- Bourguignon, J.-P., A mathematician's visit to Kaluza-Klein theory, Conf. on Partial Differential Equations and Geometry, Torino, 1988, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 143-163. (1989) Zbl0717.53062MR1086213
- Bourguignon, J. P., Jr., H. B. Lawson, 10.1007/bf01942061, Commum. Math. Phys. 79 (1981), 189-230. (1981) Zbl0475.53060MR0612248DOI10.1007/bf01942061
- Chinea, D., 10.1007/BF02844887, Rend. Circ. Mat. Palermo II. Ser. 34 (1985), 89-104. (1985) Zbl0572.53033MR0790818DOI10.1007/BF02844887
- Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F., 10.1088/1126-6708/2004/03/028, J. High Energy Phys. (electronic) 3 (2004), no. 028, 73 pages. (2004) MR2061551DOI10.1088/1126-6708/2004/03/028
- Falcitelli, M., Ianus, S., Pastore, A. M., 10.1142/5568, World Scientific Publishing, River Edge (2004). (2004) Zbl1067.53016MR2110043DOI10.1142/5568
- Gray, A., Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715-737. (1967) Zbl0147.21201MR0205184
- Ianuş, S., Mazzocco, R., lcu, G. E. Vî, 10.1007/s10440-008-9241-3, Acta. Appl. Math. 104 (2008), 83-89. (2008) Zbl1151.53329MR2434668DOI10.1007/s10440-008-9241-3
- Ianus, S., Vişinescu, M., 10.1088/0264-9381/4/5/026, Classical Quantum Gravity 4 (1987), 1317-1325. (1987) Zbl0629.53072MR0905571DOI10.1088/0264-9381/4/5/026
- Ianus, S., Visinescu, M., 10.1142/9789814503457_0026, The Mathematical Heritage of C. F. Gauss, Collect. Pap. Mem. C. F. Gauss, World Sci. Publ., River Edge (1991), 358-371. (1991) Zbl0765.53064MR1146240DOI10.1142/9789814503457_0026
- Marrero, J. C., Rocha, J., 10.1007/BF01278477, Geom. Dedicata 52 (1994), 271-289. (1994) Zbl0810.53054MR1299880DOI10.1007/BF01278477
- Mémoli, F., Sapiro, G., Thompson, P., 10.1016/j.neuroimage.2004.07.072, NeuroImage 23 (2004), 179-188. (2004) DOI10.1016/j.neuroimage.2004.07.072
- Mustafa, M. T., 10.1063/1.1290381, J. Math. Phys. 41 (2000), 6918-6929. (2000) Zbl0974.58017MR1781415DOI10.1063/1.1290381
- O'Neill, B., 10.1307/mmj/1028999604, Mich. Math. J. 13 (1966), 458-469. (1966) Zbl0145.18602MR0200865DOI10.1307/mmj/1028999604
- Park, K.-S., 10.11650/twjm/1500406802, Taiwanese J. Math. 16 (2012), 1865-1878. (2012) Zbl1262.53028MR2970690DOI10.11650/twjm/1500406802
- Park, K.-S., 10.4134/BKMS.2012.49.2.329, Bull. Korean Math. Soc. 49 (2012), 329-338. (2012) Zbl1237.53016MR2934483DOI10.4134/BKMS.2012.49.2.329
- Park, K.-S., 10.11650/tjm.18.2014.4079, Taiwanese J. Math. 18 (2014), 1909-1926. (2014) Zbl06693490MR3284038DOI10.11650/tjm.18.2014.4079
- Ponge, R., Reckziegel, H., 10.1007/BF01265674, Geom. Dedicata 48 (1993), 15-25. (1993) Zbl0792.53026MR1245571DOI10.1007/BF01265674
- 10.2478/s11533-010-0023-6, Cent. Eur. J. Math. 8 (2010), 437-447. (2010) Zbl1207.53036MR2653653DOI10.2478/s11533-010-0023-6
- Şahin, B., 10.11650/tjm.17.2013.2191, Taiwanese J. Math. 17 (2013), 629-659. (2013) Zbl1286.53041MR3044527DOI10.11650/tjm.17.2013.2191
- Watson, B., 10.4310/jdg/1214433303, J. Differ. Geom. 11 (1976), 147-165. (1976) Zbl0355.53037MR0407784DOI10.4310/jdg/1214433303
- Watson, B., -Riemannian submersions and non-linear gauge field equations of general relativity, Global Analysis -- Analysis on Manifolds Teubner-Texte Math. 57, Teubner, Leipzig (1983), 324-349. (1983) Zbl0525.53052MR0730623
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.