H-conformal anti-invariant submersions from almost quaternionic Hermitian manifolds
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 3, page 631-656
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPark, Kwang Soon. "H-conformal anti-invariant submersions from almost quaternionic Hermitian manifolds." Czechoslovak Mathematical Journal 70.3 (2020): 631-656. <http://eudml.org/doc/297087>.
@article{Park2020,
abstract = {We introduce the notions of h-conformal anti-invariant submersions and h-conformal Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds as a generalization of Riemannian submersions, horizontally conformal submersions, anti-invariant submersions, h-anti-invariant submersions, h-Lagrangian submersion, conformal anti-invariant submersions. We investigate their properties: the integrability of distributions, the geometry of foliations, the conditions for such maps to be totally geodesic, etc. Finally, we give some examples of such maps.},
author = {Park, Kwang Soon},
journal = {Czechoslovak Mathematical Journal},
keywords = {horizontally conformal submersion; quaternionic manifold; totally geodesic},
language = {eng},
number = {3},
pages = {631-656},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {H-conformal anti-invariant submersions from almost quaternionic Hermitian manifolds},
url = {http://eudml.org/doc/297087},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Park, Kwang Soon
TI - H-conformal anti-invariant submersions from almost quaternionic Hermitian manifolds
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 631
EP - 656
AB - We introduce the notions of h-conformal anti-invariant submersions and h-conformal Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds as a generalization of Riemannian submersions, horizontally conformal submersions, anti-invariant submersions, h-anti-invariant submersions, h-Lagrangian submersion, conformal anti-invariant submersions. We investigate their properties: the integrability of distributions, the geometry of foliations, the conditions for such maps to be totally geodesic, etc. Finally, we give some examples of such maps.
LA - eng
KW - horizontally conformal submersion; quaternionic manifold; totally geodesic
UR - http://eudml.org/doc/297087
ER -
References
top- Akyol, M. A., Şahin, B., 10.3906/mat-1408-20, Turk. J. Math. 40 (2016), 43-70. (2016) Zbl1424.53056MR3438784DOI10.3906/mat-1408-20
- Alekseevsky, D. V., Marchiafava, S., Almost complex submanifolds of quaternionic manifolds, Steps in Differential Geometry Institute of Mathematics and Informatics, University of Debrecen, Debrecen (2001), 23-38. (2001) Zbl1037.53029MR1859285
- Baird, P., Wood, J. C., 10.1093/acprof:oso/9780198503620.001.0001, London Mathematical Society Monographs. New Series 29. Oxford University Press, Oxford (2003). (2003) Zbl1055.53049MR2044031DOI10.1093/acprof:oso/9780198503620.001.0001
- Besse, A. L., 10.1007/978-3-540-74311-8, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge 10. Springer, Berlin (1987). (1987) Zbl0613.53001MR0867684DOI10.1007/978-3-540-74311-8
- Bourguignon, J.-P., A mathematician's visit to Kaluza-Klein theory, Rend. Semin. Mat., Torino Special Issue (1989), 143-163. (1989) Zbl0717.53062MR1086213
- J.-P. Bourguignon, H. B. Lawson, Jr., 10.1007/BF01942061, Commum. Math. Phys. 79 (1981), 189-230. (1981) Zbl0475.53060MR0612248DOI10.1007/BF01942061
- Chen, B.-Y., Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Leuven (1990). (1990) Zbl0716.53006MR1099374
- Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F., 10.1088/1126-6708/2004/03/028, J. High Energy Phys. 2004 (2004), Article ID 028, 73 pages. (2004) MR2061551DOI10.1088/1126-6708/2004/03/028
- Falcitelli, M., Ianus, S., Pastore, A. M., 10.1142/5568, World Scientific, River Edge (2004). (2004) Zbl1067.53016MR2110043DOI10.1142/5568
- Fuglede, B., 10.5802/aif.691, Ann. Inst. Fourier 28 (1978), 107-144. (1978) Zbl0339.53026MR0499588DOI10.5802/aif.691
- Gray, A., 10.1512/iumj.1967.16.16047, J. Math. Mech. 16 (1967), 715-737. (1967) Zbl0147.21201MR0205184DOI10.1512/iumj.1967.16.16047
- Gudmundsson, S., The Geometry of Harmonic Morphisms. Ph.D. Thesis, University of Leeds, Leeds (1992), Available at http://www.matematik.lu.se/matematiklu/personal/sigma/Doctoral-thesis.pdf. (1992) MR1068448
- Gudmundsson, S., Wood, J. C., Harmonic morphisms between almost Hermitian manifolds, Boll. Unione Mat. Ital., VII. Ser., B 11 (1997), 185-197. (1997) Zbl0879.53023MR1456260
- Ianuş, S., Mazzocco, R., Vîlcu, G. E., 10.1007/s10440-008-9241-3, Acta. Appl. Math. 104 (2008), 83-89. (2008) Zbl1151.53329MR2434668DOI10.1007/s10440-008-9241-3
- Ianuş, S., Vişinescu, M., 10.1088/0264-9381/4/5/026, Classical Quantum Gravity 4 (1987), 1317-1325. (1987) Zbl0629.53072MR0905571DOI10.1088/0264-9381/4/5/026
- Ianuş, S., Vişinescu, M., 10.1142/9789814503457_0026, The Mathematical Heritage of C. F. Gauss World Scientific, River Edge (1991), 358-371. (1991) Zbl0765.53064MR1146240DOI10.1142/9789814503457_0026
- Ishihara, T., 10.1215/kjm/1250522428, J. Math. Kyoto Univ. 19 (1979), 215-229. (1979) Zbl0421.31006MR0545705DOI10.1215/kjm/1250522428
- Jin, D. H., Lee, J. W., 10.17654/GT019020161, JP J. Geom. Topol. 19 (2016), 161-183. (2016) Zbl1358.53051DOI10.17654/GT019020161
- Mustafa, M. T., 10.1063/1.1290381, J. Math. Phys. 41 (2000), 6918-6929. (2000) Zbl0974.58017MR1781415DOI10.1063/1.1290381
- O'Neill, B., 10.1307/mmj/1028999604, Mich. Math. J. 13 (1966), 459-469. (1966) Zbl0145.18602MR0200865DOI10.1307/mmj/1028999604
- Park, K.-S., 10.11650/twjm/1500406802, Taiwanese J. Math. 16 (2012), 1865-1878. (2012) Zbl1262.53028MR2970690DOI10.11650/twjm/1500406802
- Park, K.-S., 10.15672/hujms.599132, (to appear) in Hacet. J. Math. Stat. MR3284038DOI10.15672/hujms.599132
- Park, K.-S., 10.21136/CMJ.2017.0143-16, Czech. Math. J. 67 (2017), 557-578. (2017) Zbl06738539MR3661061DOI10.21136/CMJ.2017.0143-16
- Park, K.-S., Prasad, R., 10.4134/BKMS.2013.50.3.951, Bull. Korean Math. Soc. 50 (2013), 951-962. (2013) Zbl1273.53023MR3066240DOI10.4134/BKMS.2013.50.3.951
- Ponge, R., Reckziegel, H., 10.1007/BF01265674, Geom. Dedicata 48 (1993), 15-25. (1993) Zbl0792.53026MR1245571DOI10.1007/BF01265674
- Şahin, B., 10.2478/s11533-010-0023-6, Cent. Eur. J. Math. 8 (2010), 437-447. (2010) Zbl1207.53036MR2653653DOI10.2478/s11533-010-0023-6
- Şahin, B., Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 93-105. (2011) Zbl1224.53054MR2799245
- Şahin, B., 10.11650/tjm.17.2013.2191, Taiwanese J. Math. 17 (2013), 629-659. (2013) Zbl1286.53041MR3044527DOI10.11650/tjm.17.2013.2191
- Şahin, B., 10.4153/CMB-2011-144-8, Can. Math. Bull. 56 (2013), 173-183. (2013) Zbl1259.53014MR3009415DOI10.4153/CMB-2011-144-8
- Urakawa, H., 10.1090/mmono/132, Translations of Mathematical Monographs 132. American Mathematical Society, Providence (1993). (1993) Zbl0799.58001MR1252178DOI10.1090/mmono/132
- Watson, B., 10.4310/jdg/1214433303, J. Differ. Geom. 11 (1976), 147-165. (1976) Zbl0355.53037MR0407784DOI10.4310/jdg/1214433303
- Watson, B., -Riemannian submersions and nonlinear gauge field equations of general relativity, Global Analysis - Analysis on Manifolds Teubner Texts in Mathematics 57. Teubner, Leipzig (1983), 324-349. (1983) Zbl0525.53052MR0730623
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.