Displaying similar documents to “H-anti-invariant submersions from almost quaternionic Hermitian manifolds”

Anti-invariant Riemannian submersions from almost Hermitian manifolds

Bayram Ṣahin (2010)

Open Mathematics

Similarity:

We introduce anti-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. We give an example, investigate the geometry of foliations which are arisen from the definition of a Riemannian submersion and check the harmonicity of such submersions. We also find necessary and sufficient conditions for a Langrangian Riemannian submersion, a special anti-invariant Riemannian submersion, to be totally geodesic. Moreover, we obtain decomposition theorems for...

Semi-slant Riemannian maps into almost Hermitian manifolds

Kwang-Soon Park, Bayram Şahin (2014)

Czechoslovak Mathematical Journal

Similarity:

We introduce semi-slant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds as a generalization of semi-slant immersions, invariant Riemannian maps, anti-invariant Riemannian maps and slant Riemannian maps. We obtain characterizations, investigate the harmonicity of such maps and find necessary and sufficient conditions for semi-slant Riemannian maps to be totally geodesic. Then we relate the notion of semi-slant Riemannian maps to the notion of pseudo-horizontally...

Harmonic maps and Riemannian submersions between manifolds endowed with special structures

Stere Ianuş, Gabriel Eduard Vîlcu, Rodica Cristina Voicu (2011)

Banach Center Publications

Similarity:

It is well known that Riemannian submersions are of interest in physics, owing to their applications in the Yang-Mills theory, Kaluza-Klein theory, supergravity and superstring theories. In this paper we give a survey of harmonic maps and Riemannian submersions between manifolds equipped with certain geometrical structures such as almost Hermitian structures, contact structures, f-structures and quaternionic structures. We also present some new results concerning holomorphic maps and...

A finiteness theorem for Riemannian submersions

Paweł G. Walczak (1992)

Annales Polonici Mathematici

Similarity:

Given some geometric bounds for the base space and the fibres, there is a finite number of conjugacy classes of Riemannian submersions between compact Riemannian manifolds.

Geodesic graphs on special 7-dimensional g.o. manifolds

Zdeněk Dušek, Oldřich Kowalski (2006)

Archivum Mathematicum

Similarity:

In ( Dušek, Z., Kowalski, O. and Nikčević, S. Ž., New examples of Riemannian g.o. manifolds in dimension 7, Differential Geom. Appl. 21 (2004), 65–78.), the present authors and S. Nikčević constructed the 2-parameter family of invariant Riemannian metrics on the homogeneous manifolds M = [ SO ( 5 ) × SO ( 2 ) ] / U ( 2 ) and M = [ SO ( 4 , 1 ) × SO ( 2 ) ] / U ( 2 ) . They proved that, for the open dense subset of this family, the corresponding Riemannian manifolds are g.o. manifolds which are not naturally reductive. Now we are going to investigate the remaining...