Results on linear and nonlinear hyperbolic boundary value problems at resonance

Michael W. Smiley

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1980)

  • Volume: 69, Issue: 6, page 327-332
  • ISSN: 0392-7881

How to cite

top

Smiley, Michael W.. "Results on linear and nonlinear hyperbolic boundary value problems at resonance." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 69.6 (1980): 327-332. <http://eudml.org/doc/288862>.

@article{Smiley1980,
author = {Smiley, Michael W.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {12},
number = {6},
pages = {327-332},
publisher = {Accademia Nazionale dei Lincei},
title = {Results on linear and nonlinear hyperbolic boundary value problems at resonance},
url = {http://eudml.org/doc/288862},
volume = {69},
year = {1980},
}

TY - JOUR
AU - Smiley, Michael W.
TI - Results on linear and nonlinear hyperbolic boundary value problems at resonance
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1980/12//
PB - Accademia Nazionale dei Lincei
VL - 69
IS - 6
SP - 327
EP - 332
LA - eng
UR - http://eudml.org/doc/288862
ER -

References

top
  1. Cesari, L. (1976) - Functional analysis, nonlinear differential equations, and the alternative method, in «Functional Analysis and Nonlinear Differential Equations» (L. Cesari, R. Kannan, J.D. Schuur, editors), Dekker, New York, pp. 1-197. MR477808
  2. Dunford, N. and Schwartz, J. (1963) - Linear Operators, Vol. I, Interscience Publishers, New York. Zbl0128.34803MR188745
  3. Hale, J. (1969) - Ordinary Differential Equations, «Wiley-Interscience», New York. MR419901
  4. Hale, J. (1967) - Periodic solutions of a class of hyperbolic equations containing a small parameter, «Archive Rational Mech. Anal.», 23, 380-398. Zbl0152.10002MR206503DOI10.1007/BF00276781
  5. Hall, W.S. (1970) - On the existence of periodic solutions for the equation D u u + ( - 1 ) p D x 2 p u = ϵ f ( , , u ) , «J. Differential Equations», 7, 509-626. MR265738DOI10.1016/0022-0396(70)90098-7
  6. Hall, W.S. (1970) - Periodic solutions of a class of weakly nonlinear evolution equations, «Archive Rational Mech. Anal.», 39, 294-322. Zbl0211.12704MR274914DOI10.1007/BF00281367
  7. Lions, J.L. (1961) - Equations Differentialles Opérationnelles et Problems Aux Limites, Springer-Verlag, Berlin. MR153974
  8. Lions, J.L. and Magenes, E. (1972) - Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, New York. MR350178
  9. Rabinowitz, P. (1967) - Periodic solutions of nonlinear hyperbolic partial differential equations, «Comm. Pure, Appl. Math.», 20, 145-205. MR206507DOI10.1002/cpa.3160200105
  10. Rabinowitz, P. (1968) - Periodic solutions of nonlinear hyperbolic partial differential equations. II, «Comm. Pure Appl. Math.», 22, 15-39. MR236504DOI10.1002/cpa.3160220103
  11. Schwartz, L. (1957) - Théorie des distributions à valeurs vectorielles, I, «Annales de L'Institute Fourier», 7, 1-141. MR107812
  12. Vejvoda, O. (1964) - Periodic solutions of a linear and weakly nonlinear wave equation in one dimension. I, «Czech. Math. J.», 14, 341-382. Zbl0178.45302MR174872

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.