Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents
Giovanna Cerami; Donato Fortunato; Michaël Struwe
Annales de l'I.H.P. Analyse non linéaire (1984)
- Volume: 1, Issue: 5, page 341-350
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCerami, Giovanna, Fortunato, Donato, and Struwe, Michaël. "Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents." Annales de l'I.H.P. Analyse non linéaire 1.5 (1984): 341-350. <http://eudml.org/doc/78079>.
@article{Cerami1984,
author = {Cerami, Giovanna, Fortunato, Donato, Struwe, Michaël},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Palais Smale condition; semilinear elliptic equation; critical points; multiplicity; critical Sobolev exponent; existence; Laplace-Beltrami},
language = {eng},
number = {5},
pages = {341-350},
publisher = {Gauthier-Villars},
title = {Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents},
url = {http://eudml.org/doc/78079},
volume = {1},
year = {1984},
}
TY - JOUR
AU - Cerami, Giovanna
AU - Fortunato, Donato
AU - Struwe, Michaël
TI - Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 5
SP - 341
EP - 350
LA - eng
KW - Palais Smale condition; semilinear elliptic equation; critical points; multiplicity; critical Sobolev exponent; existence; Laplace-Beltrami
UR - http://eudml.org/doc/78079
ER -
References
top- [0] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. funct. Anal., t. 14, 1973, p. 349-381. Zbl0273.49063MR370183
- [1] Th. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Diff. Geom., t. 11, 1976, p. 573-598. Zbl0371.46011MR448404
- [2] Th. Aubin, Nonlinear analysis on manifolds, Monge-Ampere equations. Springer Grundelehren 252, 1982. Zbl0512.53044MR681859
- [3] P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with « strong resonance » at infinity, Journal of nonlinear Anal. T. M. A., t. 7, 1983, p. 981-1012. Zbl0522.58012MR713209
- [4] V. Benci, D. Fortunato, The dual method in critical point Theory. Multiplicity results for indefinite functionals, Ann. Mat. Pura Appl., t. 32, 1982, p. 215-242. Zbl0526.58013MR696044
- [5] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., t. XXXVI, 1983. Zbl0541.35029MR709644
- [6] H. Brezis, T. Kato, Remarks on the Schrodinger operator with singular complex potential, J. Math. Pures et Appl., t. 58, 1979, p. 137-151. Zbl0408.35025MR539217
- [7] S. Luckhaus, Existence and regularity of weak solutions to the Dirichlet problem for semilinear elliptic systems of high order, J. Reine und Angew. Math., t. 306, 1979, p. 192-207. Zbl0395.35026MR524655
- [8] S.J. Pohozaev, Eigenfunctions of the equation Δu + λf(u) = 0, Soviet Math. Doklady, t. 6, 1965, p. 1408-1411 (Translated from the Russian Dokl. Akad. Nauk SSSR, t. 165, 1965, p. 33-36.) Zbl0141.30202MR192184
- [9] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pure Appl., t. 110, 1976, p. 353-372. Zbl0353.46018MR463908
- [10] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structure on compact manifolds, Ann. Sc. Norm. Sup. Pisa, t. 22, 1968, p. 265-274. Zbl0159.23801MR240748
Citations in EuDML Documents
top- D. Fortunato, G. Palmieri, Remarks on the Yamabe problem and the Palais-Smale condition
- A. Capozzi, D. Fortunato, G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent
- David E. Edmunds, Donato Fortunato, Enrico Jannelli, Fourth-order nonlinear elliptic equations with critical growth
- David E. Edmunds, Donato Fortunato, Enrico Jannelli, Fourth-order nonlinear elliptic equations with critical growth
- Elves A. B. Silva, Magda S Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.