Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents

Giovanna Cerami; Donato Fortunato; Michaël Struwe

Annales de l'I.H.P. Analyse non linéaire (1984)

  • Volume: 1, Issue: 5, page 341-350
  • ISSN: 0294-1449

How to cite

top

Cerami, Giovanna, Fortunato, Donato, and Struwe, Michaël. "Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents." Annales de l'I.H.P. Analyse non linéaire 1.5 (1984): 341-350. <http://eudml.org/doc/78079>.

@article{Cerami1984,
author = {Cerami, Giovanna, Fortunato, Donato, Struwe, Michaël},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Palais Smale condition; semilinear elliptic equation; critical points; multiplicity; critical Sobolev exponent; existence; Laplace-Beltrami},
language = {eng},
number = {5},
pages = {341-350},
publisher = {Gauthier-Villars},
title = {Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents},
url = {http://eudml.org/doc/78079},
volume = {1},
year = {1984},
}

TY - JOUR
AU - Cerami, Giovanna
AU - Fortunato, Donato
AU - Struwe, Michaël
TI - Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 5
SP - 341
EP - 350
LA - eng
KW - Palais Smale condition; semilinear elliptic equation; critical points; multiplicity; critical Sobolev exponent; existence; Laplace-Beltrami
UR - http://eudml.org/doc/78079
ER -

References

top
  1. [0] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. funct. Anal., t. 14, 1973, p. 349-381. Zbl0273.49063MR370183
  2. [1] Th. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Diff. Geom., t. 11, 1976, p. 573-598. Zbl0371.46011MR448404
  3. [2] Th. Aubin, Nonlinear analysis on manifolds, Monge-Ampere equations. Springer Grundelehren 252, 1982. Zbl0512.53044MR681859
  4. [3] P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with « strong resonance » at infinity, Journal of nonlinear Anal. T. M. A., t. 7, 1983, p. 981-1012. Zbl0522.58012MR713209
  5. [4] V. Benci, D. Fortunato, The dual method in critical point Theory. Multiplicity results for indefinite functionals, Ann. Mat. Pura Appl., t. 32, 1982, p. 215-242. Zbl0526.58013MR696044
  6. [5] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., t. XXXVI, 1983. Zbl0541.35029MR709644
  7. [6] H. Brezis, T. Kato, Remarks on the Schrodinger operator with singular complex potential, J. Math. Pures et Appl., t. 58, 1979, p. 137-151. Zbl0408.35025MR539217
  8. [7] S. Luckhaus, Existence and regularity of weak solutions to the Dirichlet problem for semilinear elliptic systems of high order, J. Reine und Angew. Math., t. 306, 1979, p. 192-207. Zbl0395.35026MR524655
  9. [8] S.J. Pohozaev, Eigenfunctions of the equation Δu + λf(u) = 0, Soviet Math. Doklady, t. 6, 1965, p. 1408-1411 (Translated from the Russian Dokl. Akad. Nauk SSSR, t. 165, 1965, p. 33-36.) Zbl0141.30202MR192184
  10. [9] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pure Appl., t. 110, 1976, p. 353-372. Zbl0353.46018MR463908
  11. [10] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structure on compact manifolds, Ann. Sc. Norm. Sup. Pisa, t. 22, 1968, p. 265-274. Zbl0159.23801MR240748

Citations in EuDML Documents

top
  1. D. Fortunato, G. Palmieri, Remarks on the Yamabe problem and the Palais-Smale condition
  2. A. Capozzi, D. Fortunato, G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent
  3. David E. Edmunds, Donato Fortunato, Enrico Jannelli, Fourth-order nonlinear elliptic equations with critical growth
  4. David E. Edmunds, Donato Fortunato, Enrico Jannelli, Fourth-order nonlinear elliptic equations with critical growth
  5. Elves A. B. Silva, Magda S Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.