An existence result for nonlinear elliptic problems involving critical Sobolev exponent
A. Capozzi; D. Fortunato; G. Palmieri
Annales de l'I.H.P. Analyse non linéaire (1985)
- Volume: 2, Issue: 6, page 463-470
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [0] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical points theory and applications. J. Funct. Analysis, t. 14, 1973, p. 349-381. Zbl0273.49063MR370183
- [1] P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with « strong resonance » at infinity. Journal of nonlinear Anal. T. M. A., t. 7, 1983, p. 981-1012. Zbl0522.58012MR713209
- [2] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., t. XXXVI, 1983, p. 437-477. Zbl0541.35029MR709644
- [3] A. Capozzi, G. Palmieri, Multiplicity results for nonlinear elliptic equations involving critical Sobolev exponent, preprint. Zbl0624.35035MR866840
- [4] G. Cerami, D. Fortunato, M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré. Analyse non linéaire, t. 1, 1984, p. 341-350. Zbl0568.35039MR779872
- [5] D. Fortunato, Problemi ellittici con termine non lineare a crescita critica, Proceedings of the meeting « Problemi differenziali e teoria dei punti critici ». Bari, marzo, 1984.
- [6] S.J. Pohozaev, Eigenfunctions of the equation Δu + λf(u) = 0. Soviet Math. Doklady, t. 6, 1965, p. 1408-1411. Zbl0141.30202
- [7] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting non-linearities. Math. Z., t. 187, 1984, p. 511-517. Zbl0535.35025MR760051
Citations in EuDML Documents
top- Adimurthi, S. L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of involving critical exponents
- David E. Edmunds, Donato Fortunato, Enrico Jannelli, Fourth-order nonlinear elliptic equations with critical growth
- David E. Edmunds, Donato Fortunato, Enrico Jannelli, Fourth-order nonlinear elliptic equations with critical growth
- Elves A. B. Silva, Magda S Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents
- Haïm Brezis, Points critiques dans les problèmes variationnels sans compacité
- Antonio Ambrosetti, Critical points and nonlinear variational problems