An existence result for nonlinear elliptic problems involving critical Sobolev exponent

A. Capozzi; D. Fortunato; G. Palmieri

Annales de l'I.H.P. Analyse non linéaire (1985)

  • Volume: 2, Issue: 6, page 463-470
  • ISSN: 0294-1449

How to cite

top

Capozzi, A., Fortunato, D., and Palmieri, G.. "An existence result for nonlinear elliptic problems involving critical Sobolev exponent." Annales de l'I.H.P. Analyse non linéaire 2.6 (1985): 463-470. <http://eudml.org/doc/78105>.

@article{Capozzi1985,
author = {Capozzi, A., Fortunato, D., Palmieri, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {existence; critical Sobolev exponent; embedding},
language = {eng},
number = {6},
pages = {463-470},
publisher = {Gauthier-Villars},
title = {An existence result for nonlinear elliptic problems involving critical Sobolev exponent},
url = {http://eudml.org/doc/78105},
volume = {2},
year = {1985},
}

TY - JOUR
AU - Capozzi, A.
AU - Fortunato, D.
AU - Palmieri, G.
TI - An existence result for nonlinear elliptic problems involving critical Sobolev exponent
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 6
SP - 463
EP - 470
LA - eng
KW - existence; critical Sobolev exponent; embedding
UR - http://eudml.org/doc/78105
ER -

References

top
  1. [0] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical points theory and applications. J. Funct. Analysis, t. 14, 1973, p. 349-381. Zbl0273.49063MR370183
  2. [1] P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with « strong resonance » at infinity. Journal of nonlinear Anal. T. M. A., t. 7, 1983, p. 981-1012. Zbl0522.58012MR713209
  3. [2] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., t. XXXVI, 1983, p. 437-477. Zbl0541.35029MR709644
  4. [3] A. Capozzi, G. Palmieri, Multiplicity results for nonlinear elliptic equations involving critical Sobolev exponent, preprint. Zbl0624.35035MR866840
  5. [4] G. Cerami, D. Fortunato, M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré. Analyse non linéaire, t. 1, 1984, p. 341-350. Zbl0568.35039MR779872
  6. [5] D. Fortunato, Problemi ellittici con termine non lineare a crescita critica, Proceedings of the meeting « Problemi differenziali e teoria dei punti critici ». Bari, marzo, 1984. 
  7. [6] S.J. Pohozaev, Eigenfunctions of the equation Δu + λf(u) = 0. Soviet Math. Doklady, t. 6, 1965, p. 1408-1411. Zbl0141.30202
  8. [7] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting non-linearities. Math. Z., t. 187, 1984, p. 511-517. Zbl0535.35025MR760051

Citations in EuDML Documents

top
  1. Adimurthi, S. L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of 2 involving critical exponents
  2. David E. Edmunds, Donato Fortunato, Enrico Jannelli, Fourth-order nonlinear elliptic equations with critical growth
  3. David E. Edmunds, Donato Fortunato, Enrico Jannelli, Fourth-order nonlinear elliptic equations with critical growth
  4. Elves A. B. Silva, Magda S Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents
  5. Haïm Brezis, Points critiques dans les problèmes variationnels sans compacité
  6. Antonio Ambrosetti, Critical points and nonlinear variational problems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.