# On the inequalities associated with a model of Graffi for the motion of a mixture of two viscous, incompressible fluids

- Volume: 82, Issue: 1, page 17-20
- ISSN: 0392-7881

## Access Full Article

top## Abstract

top## How to cite

topProuse, Giovanni, and Zaretti, Anna. "On the inequalities associated with a model of Graffi for the motion of a mixture of two viscous, incompressible fluids." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 82.1 (1988): 17-20. <http://eudml.org/doc/289153>.

@article{Prouse1988,

abstract = {We demonstrate a theorem of existence and uniqueness on a large scale of the solution of a system of differential disequations associated to a Graffi model relative to the motion of two incompressible viscous fluids.},

author = {Prouse, Giovanni, Zaretti, Anna},

journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},

keywords = {Partial differential equations and inequalities; Fluid dynamics; Mathematical models},

language = {eng},

month = {3},

number = {1},

pages = {17-20},

publisher = {Accademia Nazionale dei Lincei},

title = {On the inequalities associated with a model of Graffi for the motion of a mixture of two viscous, incompressible fluids},

url = {http://eudml.org/doc/289153},

volume = {82},

year = {1988},

}

TY - JOUR

AU - Prouse, Giovanni

AU - Zaretti, Anna

TI - On the inequalities associated with a model of Graffi for the motion of a mixture of two viscous, incompressible fluids

JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

DA - 1988/3//

PB - Accademia Nazionale dei Lincei

VL - 82

IS - 1

SP - 17

EP - 20

AB - We demonstrate a theorem of existence and uniqueness on a large scale of the solution of a system of differential disequations associated to a Graffi model relative to the motion of two incompressible viscous fluids.

LA - eng

KW - Partial differential equations and inequalities; Fluid dynamics; Mathematical models

UR - http://eudml.org/doc/289153

ER -

## References

top- BEIRAO DA VEIGA, H. (1983) - Diffusion on viscous fluids, existence and asymptotic properties of solutions. «Ann. Sc. Norm. Pisa», IV, 10, 1983. Zbl0531.76095MR728440
- ANTONOV, S.N. and KAZHIKOV, A.V. (1973) - The mathematical problem of the dynamics of non homogeneous fluids. Novosibirsk.
- LADYZENSKAJA, O.A. and SOLONNIKOV, V.A. (1978) - Unique solvability of an initial and boundary value problem for viscous, incompressible, non homogeneous fluids. «J. Sov. Math.», 9. Zbl0401.76037
- LIONS, J.L. (1977) - On some problems connected with the Navier-Stokes equations. Proc. Symp. on non linear equations. Univ. of Wisconsin. Zbl0499.35090MR513812
- GRAFFI, D. (1955) - Il teorema di unicità per i fluidi compressibili, perfetti, eterogenei. «Rev. Un. Mat. Arg.», 17. Zbl0074.20206MR82829

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.