Diffusion on viscous fluids. Existence and asymptotic properties of solutions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1983)
- Volume: 10, Issue: 2, page 341-355
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBeirão da Veiga, H.. "Diffusion on viscous fluids. Existence and asymptotic properties of solutions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.2 (1983): 341-355. <http://eudml.org/doc/83910>.
@article{BeirãodaVeiga1983,
author = {Beirão da Veiga, H.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {viscous; asymptotic properties; existence of global solution; motion of a continuous medium; Fick's law; uniqueness},
language = {eng},
number = {2},
pages = {341-355},
publisher = {Scuola normale superiore},
title = {Diffusion on viscous fluids. Existence and asymptotic properties of solutions},
url = {http://eudml.org/doc/83910},
volume = {10},
year = {1983},
}
TY - JOUR
AU - Beirão da Veiga, H.
TI - Diffusion on viscous fluids. Existence and asymptotic properties of solutions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1983
PB - Scuola normale superiore
VL - 10
IS - 2
SP - 341
EP - 355
LA - eng
KW - viscous; asymptotic properties; existence of global solution; motion of a continuous medium; Fick's law; uniqueness
UR - http://eudml.org/doc/83910
ER -
References
top- [1] H. Beirão Da Veiga - R. Serapioni - A. Valli, On the motion of non-homogeneous fluids in the presence of diffusion, J. Math. Anal. Appl., 85 (1982), pp. 179-191. Zbl0593.76104MR647566
- [2] D.A. Frank-Kamenetskii, Diffusion and heat transfer in chemical kinetics, Plenum ed., New York, London (1969).
- [3] E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova, 27 (1957), pp. 284-305. Zbl0087.10902MR102739
- [4] V.N. Ignat'ev - B.G. Kuznetsov, A model for the diffusion of a turbulent boundary layer in a polymer, Čisl. Metody Meh. Splošn. Sredy, 4 (1973), pp. 78-87 (in Russian).
- [5] A.V. Kazhikhov - SH. Smagulov, The correctness of boundary-value problems in a diffusion model of an inhomogeneous liquid, Sov. Phys. Dokl., 22 (1977), pp. 249-250. Zbl0427.76078
- [6] A.V. Kazhikhov - SH. Smagulov, The correctness of boundary-value problems in a certain diffusion model of an inhomogeneous fluid, Čisl. Metody Meh. Splošn. Sredy, 7 (1976), pp. 75-92. Zbl0427.76078MR459266
- [7] O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York (1969). Zbl0184.52603MR254401
- [8] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris (1969). Zbl0189.40603MR259693
- [9] J.L. Lions - E. Magenes, Problèmes aux limites non homogènes et applications, Voll. I, II, Dunod, Paris (1968). Zbl0165.10801
- [10] G. Prouse - A. Zaretti, On the inequalities associated to a model of Graffi for the motion of a mixture of two viscous incomplessible fluids, preprint Dipartimento di Matematica, Politecnico di Milano (1982). Zbl0669.76131MR999833
- [11] P. Secchi, On the initial value problem for the equations of motion of viscous incompressible fluids in presence of diffusion, Bollettino U.M.I., 1-B (1982), pp. 1117-1130. Zbl0499.76077MR683497
- [12] R. Temam, Navier-Stokes equations, North-Holland, Amsterdam (1977). Zbl0383.35057
Citations in EuDML Documents
top- Giovanni Prouse, Anna Zaretti, On the inequalities associated with a model of Graffi for the motion of a mixture of two viscous, incompressible fluids
- Giovanni Prouse, Anna Zaretti, On the inequalities associated with a model of Graffi for the motion of a mixture of two viscous, incompressible fluids
- Alberto Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.