Diffusion on viscous fluids. Existence and asymptotic properties of solutions

H. Beirão da Veiga

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1983)

  • Volume: 10, Issue: 2, page 341-355
  • ISSN: 0391-173X

How to cite

top

Beirão da Veiga, H.. "Diffusion on viscous fluids. Existence and asymptotic properties of solutions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.2 (1983): 341-355. <http://eudml.org/doc/83910>.

@article{BeirãodaVeiga1983,
author = {Beirão da Veiga, H.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {viscous; asymptotic properties; existence of global solution; motion of a continuous medium; Fick's law; uniqueness},
language = {eng},
number = {2},
pages = {341-355},
publisher = {Scuola normale superiore},
title = {Diffusion on viscous fluids. Existence and asymptotic properties of solutions},
url = {http://eudml.org/doc/83910},
volume = {10},
year = {1983},
}

TY - JOUR
AU - Beirão da Veiga, H.
TI - Diffusion on viscous fluids. Existence and asymptotic properties of solutions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1983
PB - Scuola normale superiore
VL - 10
IS - 2
SP - 341
EP - 355
LA - eng
KW - viscous; asymptotic properties; existence of global solution; motion of a continuous medium; Fick's law; uniqueness
UR - http://eudml.org/doc/83910
ER -

References

top
  1. [1] H. Beirão Da Veiga - R. Serapioni - A. Valli, On the motion of non-homogeneous fluids in the presence of diffusion, J. Math. Anal. Appl., 85 (1982), pp. 179-191. Zbl0593.76104MR647566
  2. [2] D.A. Frank-Kamenetskii, Diffusion and heat transfer in chemical kinetics, Plenum ed., New York, London (1969). 
  3. [3] E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova, 27 (1957), pp. 284-305. Zbl0087.10902MR102739
  4. [4] V.N. Ignat'ev - B.G. Kuznetsov, A model for the diffusion of a turbulent boundary layer in a polymer, Čisl. Metody Meh. Splošn. Sredy, 4 (1973), pp. 78-87 (in Russian). 
  5. [5] A.V. Kazhikhov - SH. Smagulov, The correctness of boundary-value problems in a diffusion model of an inhomogeneous liquid, Sov. Phys. Dokl., 22 (1977), pp. 249-250. Zbl0427.76078
  6. [6] A.V. Kazhikhov - SH. Smagulov, The correctness of boundary-value problems in a certain diffusion model of an inhomogeneous fluid, Čisl. Metody Meh. Splošn. Sredy, 7 (1976), pp. 75-92. Zbl0427.76078MR459266
  7. [7] O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York (1969). Zbl0184.52603MR254401
  8. [8] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris (1969). Zbl0189.40603MR259693
  9. [9] J.L. Lions - E. Magenes, Problèmes aux limites non homogènes et applications, Voll. I, II, Dunod, Paris (1968). Zbl0165.10801
  10. [10] G. Prouse - A. Zaretti, On the inequalities associated to a model of Graffi for the motion of a mixture of two viscous incomplessible fluids, preprint Dipartimento di Matematica, Politecnico di Milano (1982). Zbl0669.76131MR999833
  11. [11] P. Secchi, On the initial value problem for the equations of motion of viscous incompressible fluids in presence of diffusion, Bollettino U.M.I., 1-B (1982), pp. 1117-1130. Zbl0499.76077MR683497
  12. [12] R. Temam, Navier-Stokes equations, North-Holland, Amsterdam (1977). Zbl0383.35057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.