Trace inequalities for Carnot-Carathéodory spaces and applications

Donatella Danielli; Nicola Garofalo; Duy-Minh Nhieu

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 27, Issue: 2, page 195-252
  • ISSN: 0391-173X

How to cite

top

Danielli, Donatella, Garofalo, Nicola, and Nhieu, Duy-Minh. "Trace inequalities for Carnot-Carathéodory spaces and applications." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.2 (1998): 195-252. <http://eudml.org/doc/84357>.

@article{Danielli1998,
author = {Danielli, Donatella, Garofalo, Nicola, Nhieu, Duy-Minh},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Sobolev spaces; trace inequalities; nonnegative Borel measures; Carnot-Carathéodory topology; weak- Poincaré type inequality; Baouendi-Grushkin vector fields; Lipschitz vector fields associated to the subelliptic operators; Heisenberg groups},
language = {eng},
number = {2},
pages = {195-252},
publisher = {Scuola normale superiore},
title = {Trace inequalities for Carnot-Carathéodory spaces and applications},
url = {http://eudml.org/doc/84357},
volume = {27},
year = {1998},
}

TY - JOUR
AU - Danielli, Donatella
AU - Garofalo, Nicola
AU - Nhieu, Duy-Minh
TI - Trace inequalities for Carnot-Carathéodory spaces and applications
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 2
SP - 195
EP - 252
LA - eng
KW - Sobolev spaces; trace inequalities; nonnegative Borel measures; Carnot-Carathéodory topology; weak- Poincaré type inequality; Baouendi-Grushkin vector fields; Lipschitz vector fields associated to the subelliptic operators; Heisenberg groups
UR - http://eudml.org/doc/84357
ER -

References

top
  1. [1] D. Adams, Traces ofpotentials arising from translation invariant operators, Ann. Scuola Norm. Sup.Pisa Cl. Sci.25 (1971), 203-217. Zbl0219.46027MR287301
  2. [2] D. Adams, A trace inequality for generalized potentials, Studia Math.48 (1973), 99-105. Zbl0237.46037MR336316
  3. [3] D. Adams, Weighted nonlinear potential theory, Trans. Amer. Math. Soc.297 (1986), 73-94. Zbl0656.31012MR849468
  4. [4] D. Adams - L. Hedberg, "Function Spaces and Potential Theory", Springer-Verlag, 1996. Zbl0834.46021MR1411441
  5. [5] M.S. Baouendi, Sur une classe d'opérateurs elliptiques dégénérés, Bull. Soc. Math France195 (1967), 45-87. Zbl0179.19501MR228819
  6. [6] A. Bellaïche, "Sub-Riemannian Geometry", Birkhäuser, 1996. Zbl0862.53031MR1421821
  7. [7] M. Biroli - U. Mosco, A Saint- Venant type principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl. (IV) 169 (1995), 125-181. Zbl0851.31008MR1378473
  8. [8] M. Biroli - U. Mosco, Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.6 (1995), 37-44. Zbl0837.31006MR1340280
  9. [9] M. Biroli - U. Mosco, Sobolev inequalities on homogeneous spaces, Potential Anal.4 (1995), 311-324. Zbl0833.46020MR1354886
  10. [10] J. Boman, Lp estimates for very strongly elliptic systems, unpublished manuscript. 
  11. [11] S. BUCKLEY - P. KOSKELA - G. Lu (eds.), Boman equals John, In: "Proc. of the 16th Nevanlinna Coll". (Joensuu, 1995), de Gruyter, Berlin, 1996. Zbl0861.43007MR1427074
  12. [12] H. Busemann, "Recent Synthetic Differential Geometry", Springer-Verlag, 1970. Zbl0194.53701MR296877
  13. [13] P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup.4 (1982), 213-230. Zbl0501.53030MR683635
  14. [14] L. Capogna - D. Danielli - N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations18 (1993), 1765-1794. Zbl0802.35024MR1239930
  15. [15] L. Capogna - D. Danielli - N. Garofalo, An isoperimetric inequality and the geometric Sobolev embedding for vector fields, Comm. Anal. Geom.2 (1994), 203-215. Zbl0864.46018MR1312686
  16. [16] L. Capogna - D. Danielli - N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z.226 (1997), 147-154. Zbl0893.35023MR1472145
  17. [17] L. Capogna - D. Danielli - N. Garofalo, Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, Amer. J. Math.118 (1997), 1153-1196. Zbl0878.35020MR1420920
  18. [18] L. Capogna - N. Garofalo, Boundary behavior of nonegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics, J. Fourier Anal. Appl.4 (1998), to appear. Zbl0926.35043MR1658616
  19. [19] L. Capogna - N. Garofalo - D.M. Nhieu, The Dirichlet problem for sub-Laplacians, preprint (1997). 
  20. [20] S.Y.A. Chang - J.M. Wilson - T.H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv.60 (1985), 217-246. Zbl0575.42025MR800004
  21. [21] S. Chanillo - R.L. Wheeden, Lp estimatesforfractional integrals and Sobolev inequalities with applications to Schrödinger operators, Comm. Partial Differential Equations10 (1985), 1077-1166. Zbl0578.46024MR806256
  22. [22] F. Chiarenza, Regularity for solutions of quasilinear elliptic equations under minimal assumptions, Potential Anal.4 (1995), 325-334. Zbl0838.35022MR1354887
  23. [23] F. Chiarenza - M. Frasca, A remark on a paper by C. Fefferman, Proc. Amer. Math. Soc.108 (1990), 407-409. Zbl0694.46029MR1027825
  24. [24] I. Chavel, "Eigenvalues in Riemannian Geometry", Academic Press, Orlando, 1984. Zbl0551.53001MR768584
  25. [25] S. Cohn-Vossen, Existenz kürzester Wege, Dokl. Akad. Nauk SSSR3 (1935), 339-342. JFM61.1439.01
  26. [26] R. Coifman - G. Weiss, "Analyse harmonique non-commutative sur certains espaces homogenes", Springer-Verlag, 1971. Zbl0224.43006MR499948
  27. [27] D. Danielli, Formules de représentation et théoreèmes d'inclusion pour des opérateurs sous-elliptiques, C.R. Acad. Sci.Paris Sér. I314 (1992), 987-990. Zbl0768.46019MR1168522
  28. [28] D. Danielli, A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Analysis, to appear. Zbl0940.35057MR1719837
  29. [29] G. David - S. Semmes, Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs n. 38, American Mathematical Society, Providence, RI1993. Zbl0832.42008MR1251061
  30. [30] G. David - S. Semmes, Uniform rectifiability and singular sets, Ann. Inst. H. Poincaré Anal. Non Linéaire13 (1996), 383-443. Zbl0908.49030MR1404317
  31. [31] L.C. Evans - R.F. Gariepy, "Measure Theory and Fine Properties of Functions", CRC press, 1992. Zbl0804.28001MR1158660
  32. [32] H. Federer, "Geometric Measure Theory", Springer-Verlag, 1969. Zbl0176.00801MR257325
  33. [33] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc.9 (1983), 129-206. Zbl0526.35080MR707957
  34. [34] C. FEFFERMAN - D. H. PHONG (eds.), Subelliptic eigenvalue problems, In: "Proceedings of the Conference in Harmonic Analysis in Honor of A. Zygmund", Wadsworth Math. Ser., Belmont, CA, 1981, pp. 530-606. Zbl0503.35071MR730094
  35. [35] C. Fefferman - A. Sanchez-Calle, Fundamental solutions for second order subelliptic operators, Ann. of Math.124 (1986), 247-272. Zbl0613.35002MR855295
  36. [36] C. Fefferman - E. Stein, Some maximal inequalities, Amer. J. Math.93 (1971), 107-115. Zbl0222.26019MR284802
  37. [37] G.B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat.13 (1975), 161-207. Zbl0312.35026MR494315
  38. [38] G.B. Folland - E.M. Stein, "Hardy Spaces on Homogeneous Groups", Princeton Univ. Press., 1982. Zbl0508.42025MR657581
  39. [39] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc.327 (1991), 125-158. Zbl0751.46023MR1040042
  40. [40] B. Franchi - S. Gallot - R. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann.300 (1994), 557-571. Zbl0830.46027MR1314734
  41. [41] B. Franchi - C. Gutiérrez - R. Wheeden, Weighted Sobolev-Poincare inequalities for Grushin type operators, Comm. Partial Differential Equations, 193-4 (1994), 523-604. Zbl0822.46032MR1265808
  42. [42] B. Franchi - E. Lanconelli, Une metrique associeé à une classe d'operateurs elliptiques degénérés, Proceedings of the meeting "Linear Partial and Pseudo Differential Operators", Rend. Sem. Mat. Torino (1984), 105-114. Zbl0553.35033MR745979
  43. [43] B. Franchi - E. Lanconelli, Hölder regularity theorem for a class of linear non uniform elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), 523-451. Zbl0552.35032MR753153
  44. [44] B. Franchi - E. Lanconelli, Une condition géométrique pour l'inégalité de Harnack, J. Math. Pures Appl.64 (1985), 237-256. Zbl0599.35134MR823405
  45. [45] B. Franchi - G. Lu - R.L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-604. Zbl0820.46026MR1343563
  46. [46] B. Franchi - G. Lu - R.L. Wheeden, A relationship between Poincaré type inequalities and representation formulas in spaces of homogeneous type, Internat Math. Res. Notices1 (1996), 1-14. Zbl0856.43006MR1383947
  47. [47] B. Franchi - R. Serapioni, Pointwise estimates for a class ofstrongly degenerate elliptic operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 527-568. Zbl0685.35046MR963489
  48. [48] B. Franchi - R. Serapioni - F. Serra Cassano, Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, preprint. Zbl0876.49014MR1437714
  49. [49] B. Franchi - R. Serapioni - F. Serra Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associaed with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. to appear. Zbl0952.49010MR1448000
  50. [50] B. Franchi - R. Wheeden, Some remarks about Poincaré type inequalities and representation formulas in metric spaces of homogeneous type, preprint. Zbl0934.46037MR1731670
  51. [51] E. Gagliardo, Caratterizzazione delle tracce sula frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova27 (1957), 284-305. Zbl0087.10902MR102739
  52. [52] J. Garcia Cuerva - J.L. Rubio De Francia, "Weighted Norm Inequalities and Related Topics", North-Holland Mat. Stud. n. 116, 1985. Zbl0578.46046MR807149
  53. [53] N. Garofalo, "Recent Developments in the Theory of Subelliptic Equations and Its Geometric Aspects", Birkhäuser, to appear. 
  54. [54] N. Garofalo - D.M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math.49 (1996), 1081-1144. Zbl0880.35032MR1404326
  55. [55] N. Garofalo - D.M. Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces,J. Analyse Math.74 (1998), 67-97. Zbl0906.46026MR1631642
  56. [56] M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems", Ann. of Math. Studies105, Princeton Univ. Press, Princeton, N. J., 1983. Zbl0516.49003MR717034
  57. [57] E. Giusti, "Minimal Surfaces and Functions of Bounded Variation", Birkhäuser, 1984. Zbl0545.49018MR775682
  58. [58] M. Gromov, "Structures métriques pour les variétés Riemanniennes" (rédigé par J. Lafontaine et P. Pansu), CEDIC ED., Paris, 1981. Zbl0509.53034MR682063
  59. [59] M. Gromov, Carnot-Carathéodory spaces seen from within, Inst. Hautes Études Sci. Publ. Math. (1994). 
  60. [60] V.V. Grushin, On a class of hypoelliptic operators, Math USSR-Sb., 123 (1970), 458-476. Zbl0252.35057
  61. [61] P. Hajlasz, Sobolev spaces on an arbitrary metric space, Potential Anal.5 (1996), 403-415. Zbl0859.46022MR1401074
  62. [62] P. Hajlasz - P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris Sér. I320 (1995), 1211-1215. Zbl0837.46024MR1336257
  63. [63] L. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc.36 (1972), 505-510. Zbl0283.26003MR312232
  64. [64] L. Hedberg - T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 23 (1983), 161-187. Zbl0508.31008MR727526
  65. [65] H. Hörmander, Hypoelliptic second-order differential equations, Acta Math.119 (1967), 147-171. Zbl0156.10701MR222474
  66. [66] D. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, II, J. Funct. Anal.43 (1981), 224-257. Zbl0493.58022MR633978
  67. [67] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J.53 (1986), 503-523. Zbl0614.35066MR850547
  68. [68] D. Jerison - C.E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math.46 (1982), 80-147. Zbl0514.31003MR676988
  69. [69] F. John, Rotation and strain, Comm. Pure Appl. Math.14 (1961), 391-413. Zbl0102.17404MR138225
  70. [70] R. Kerman - E.T. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators, Ann. Inst. Fourier (Grenoble) 36 (1986), 207-228. Zbl0591.47037MR867921
  71. [71] A. Kufner - O. John - S. Fucik, "Function Spaces", Prague: Academia Pub. House of the Czechoslovak Academy of Sciences, 1977. Zbl0364.46022MR482102
  72. [72] G. Lieberman, Sharp form of estimates for subsolutions and supersolutions of quasilinear elliptic equations involving measures, Comm. Partial Differential Equations18 (1993), 1191-1212. Zbl0802.35041MR1233190
  73. [73] G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana8 (1992), 367-439. Zbl0804.35015MR1202416
  74. [74] G. Lu, The sharp Poincaré inequality for free vector fields : an endpoint result, Rev. Mat. Iberoamericana18 (1994), 453-466. Zbl0860.35006MR1286482
  75. [75] G. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields and applications, C. R. Acad. Sci. Paris Sér. I320 (1995), 429-434. Zbl0842.46019MR1320116
  76. [76] G. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields of Hörmander type, Approx. Theory Appl., to appear. Zbl0916.46026MR1651473
  77. [77] G. Lu, Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations, Publ. Mat.40 (1996), 301-329. Zbl0873.35006MR1425620
  78. [78] P. Maheux - L. Saloff-Coste, Analyse sur les boules d'un op'erateur sous-elliptique, Math. Ann.303 (1995), 713-740. Zbl0836.35106MR1359957
  79. [79] P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability ", Cambridg studies in advanced Mathematics n. 44, Cambridge University Press, 1995. Zbl0819.28004MR1333890
  80. [80] V.G. Mazýa, "Sobolev Spaces", Springer-Verlag, 1985. Zbl0692.46023MR817985
  81. [81] V.G. Mazýa - I.E. Verbitsky, Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multiplier, Ark. Mat.33 (1995), 81-115. Zbl0834.31006MR1340271
  82. [82] M. Mekias, "Restriction to Hypersurfaces of Non-isotropic Sobolev Spaces", M.I.T. Ph.D Thesis, 1993. 
  83. [83] A. Nagel - E.M. Stein - S. Wainger, Balls and metrics defined by vector fields I: basic properties, Acta Math.155 (1985), 103-147. Zbl0578.32044MR793239
  84. [84] O.A. Oleinik - E.V. Radkevich, "Second Order Equations with Non-negative Characteristic Form", (Mathematical Analysis1969), Moscow: Itogi Nauki, 1971 (Russian), English translation: Providence, R.I., Amer. Math. Soc., 1973. 
  85. [85] R.S. Phillips - L. Sarason, Elliptic-parabolic equations of the second order, J. Math. Mech.17 (1967/8), 891-917. Zbl0163.34402MR219868
  86. [86] J.M. Rakotoson, Quasilinear equations and spaces of Campanato-Morrey type, Comm. Partial Differential Equations16 (1991), 1155-1182. Zbl0827.35021MR1116857
  87. [87] J.M. Rakotoson - W.P. Ziemer, Local behavior of solutions of quasilinear elliptic equations with general structure, Trans. Amer. Math. Soc.319 (1990), 747-764. Zbl0708.35023MR998128
  88. [88] L. Saloff-Coste, Parabolic Harnack inequality for divergence-form second-order differential operators, Potential Anal.4 (1995), 429-467. Zbl0840.31006MR1354894
  89. [89] J. Serrin, Local behavior of solutions of quasilinear equations, Acta Math.111 (1964), 243-302. Zbl0128.09101MR170096
  90. [90] J. Serrin, Isolated singularities of solutions of quasilinear equations, Acta Math.113 (1965), 219-240. Zbl0173.39202MR176219
  91. [91] G. Stampacchia, Problemi al contorno per equazioni di tipo ellittico a derivate parziali e questioni di calcolo delle variazioni connesse, Ann. Mat. Pura Appl. (4) 33 (1952), 211-238. Zbl0047.33902MR51451
  92. [92] E.M. Stein, "Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals", Princeton Univ. Press., 1993. Zbl0821.42001MR1232192
  93. [93] Robert S. Strichartz, Sub-Riemannian geometry, J. Differential Geom.24 (1986), 221-263. Zbl0609.53021MR862049
  94. [94] J. Strömberg - A. Torchinsky, "Weights, Sharp Maximal Functions and Hardy Spaces", Lecture Notes in Mathematics1381, Springer-Verlag, 1989. Zbl0676.42021
  95. [95] P. Tomter, Consant mean curvature surfaces in the Heisenberg group, Proc. Symp. Pure Math.54 (1993), Part I, 485-495. Zbl0799.53073MR1216601
  96. [96] N. Th. Varopoulos, Fonctions harmoniques sure les groupes de Lie, C.R. Acad. Sci. Paris Sér. I304 (1987), 519-521. Zbl0614.22002MR892879
  97. [97] N. Th. Varopoulos - L. Saloff-Coste - T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics100, Cambridge University press, 1992. Zbl0813.22003MR1218884
  98. [98] S.K. Vodop'yanov, Weighted Lp-potential theory on homogeneous groups, Sibirsk., Mat. Zh.33 (1992), 29-48. Zbl0774.31009MR1174058
  99. [99] C.J. Xu, Subelliptic variational problems, Bull. Soc. Math. France118 (1990), 147-169. Zbl0717.49004MR1087376
  100. [100] P. Zamboni, Local behavior of solutions of quasilinear elliptic equations with coefficients in Morrey spaces, Rend. Mat. Appl.15 (1995), 251-262. Zbl0832.35046MR1339243
  101. [101] W.P. Ziemer, "Weakly Differentiable Functions", Springer-Verlag, 1989. Zbl0692.46022MR1014685

Citations in EuDML Documents

top
  1. Giuseppe Di Fazio, Pietro Zamboni, Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces
  2. Hajer Bahouri, Jean-Yves Chemin, Chao-Jiang Xu, Trace theorem on the Heisenberg group
  3. Francesco Uguzzoni, Ermanno Lanconelli, Degree theory for VMO maps on metric spaces
  4. Bernd Kirchheim, Francesco Serra Cassano, Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group
  5. Giuseppe Di Fazio, Maria Stella Fanciullo, Gradient estimates for elliptic systems in Carnot-Carathéodory spaces
  6. Franchi, Bruno, B V spaces and rectifiability for Carnot-Carathéodory metrics: an introduction

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.