Trace inequalities for Carnot-Carathéodory spaces and applications
Donatella Danielli; Nicola Garofalo; Duy-Minh Nhieu
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)
- Volume: 27, Issue: 2, page 195-252
- ISSN: 0391-173X
Access Full Article
topHow to cite
topDanielli, Donatella, Garofalo, Nicola, and Nhieu, Duy-Minh. "Trace inequalities for Carnot-Carathéodory spaces and applications." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.2 (1998): 195-252. <http://eudml.org/doc/84357>.
@article{Danielli1998,
author = {Danielli, Donatella, Garofalo, Nicola, Nhieu, Duy-Minh},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Sobolev spaces; trace inequalities; nonnegative Borel measures; Carnot-Carathéodory topology; weak- Poincaré type inequality; Baouendi-Grushkin vector fields; Lipschitz vector fields associated to the subelliptic operators; Heisenberg groups},
language = {eng},
number = {2},
pages = {195-252},
publisher = {Scuola normale superiore},
title = {Trace inequalities for Carnot-Carathéodory spaces and applications},
url = {http://eudml.org/doc/84357},
volume = {27},
year = {1998},
}
TY - JOUR
AU - Danielli, Donatella
AU - Garofalo, Nicola
AU - Nhieu, Duy-Minh
TI - Trace inequalities for Carnot-Carathéodory spaces and applications
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 2
SP - 195
EP - 252
LA - eng
KW - Sobolev spaces; trace inequalities; nonnegative Borel measures; Carnot-Carathéodory topology; weak- Poincaré type inequality; Baouendi-Grushkin vector fields; Lipschitz vector fields associated to the subelliptic operators; Heisenberg groups
UR - http://eudml.org/doc/84357
ER -
References
top- [1] D. Adams, Traces ofpotentials arising from translation invariant operators, Ann. Scuola Norm. Sup.Pisa Cl. Sci.25 (1971), 203-217. Zbl0219.46027MR287301
- [2] D. Adams, A trace inequality for generalized potentials, Studia Math.48 (1973), 99-105. Zbl0237.46037MR336316
- [3] D. Adams, Weighted nonlinear potential theory, Trans. Amer. Math. Soc.297 (1986), 73-94. Zbl0656.31012MR849468
- [4] D. Adams - L. Hedberg, "Function Spaces and Potential Theory", Springer-Verlag, 1996. Zbl0834.46021MR1411441
- [5] M.S. Baouendi, Sur une classe d'opérateurs elliptiques dégénérés, Bull. Soc. Math France195 (1967), 45-87. Zbl0179.19501MR228819
- [6] A. Bellaïche, "Sub-Riemannian Geometry", Birkhäuser, 1996. Zbl0862.53031MR1421821
- [7] M. Biroli - U. Mosco, A Saint- Venant type principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl. (IV) 169 (1995), 125-181. Zbl0851.31008MR1378473
- [8] M. Biroli - U. Mosco, Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.6 (1995), 37-44. Zbl0837.31006MR1340280
- [9] M. Biroli - U. Mosco, Sobolev inequalities on homogeneous spaces, Potential Anal.4 (1995), 311-324. Zbl0833.46020MR1354886
- [10] J. Boman, Lp estimates for very strongly elliptic systems, unpublished manuscript.
- [11] S. BUCKLEY - P. KOSKELA - G. Lu (eds.), Boman equals John, In: "Proc. of the 16th Nevanlinna Coll". (Joensuu, 1995), de Gruyter, Berlin, 1996. Zbl0861.43007MR1427074
- [12] H. Busemann, "Recent Synthetic Differential Geometry", Springer-Verlag, 1970. Zbl0194.53701MR296877
- [13] P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup.4 (1982), 213-230. Zbl0501.53030MR683635
- [14] L. Capogna - D. Danielli - N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations18 (1993), 1765-1794. Zbl0802.35024MR1239930
- [15] L. Capogna - D. Danielli - N. Garofalo, An isoperimetric inequality and the geometric Sobolev embedding for vector fields, Comm. Anal. Geom.2 (1994), 203-215. Zbl0864.46018MR1312686
- [16] L. Capogna - D. Danielli - N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z.226 (1997), 147-154. Zbl0893.35023MR1472145
- [17] L. Capogna - D. Danielli - N. Garofalo, Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, Amer. J. Math.118 (1997), 1153-1196. Zbl0878.35020MR1420920
- [18] L. Capogna - N. Garofalo, Boundary behavior of nonegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics, J. Fourier Anal. Appl.4 (1998), to appear. Zbl0926.35043MR1658616
- [19] L. Capogna - N. Garofalo - D.M. Nhieu, The Dirichlet problem for sub-Laplacians, preprint (1997).
- [20] S.Y.A. Chang - J.M. Wilson - T.H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv.60 (1985), 217-246. Zbl0575.42025MR800004
- [21] S. Chanillo - R.L. Wheeden, Lp estimatesforfractional integrals and Sobolev inequalities with applications to Schrödinger operators, Comm. Partial Differential Equations10 (1985), 1077-1166. Zbl0578.46024MR806256
- [22] F. Chiarenza, Regularity for solutions of quasilinear elliptic equations under minimal assumptions, Potential Anal.4 (1995), 325-334. Zbl0838.35022MR1354887
- [23] F. Chiarenza - M. Frasca, A remark on a paper by C. Fefferman, Proc. Amer. Math. Soc.108 (1990), 407-409. Zbl0694.46029MR1027825
- [24] I. Chavel, "Eigenvalues in Riemannian Geometry", Academic Press, Orlando, 1984. Zbl0551.53001MR768584
- [25] S. Cohn-Vossen, Existenz kürzester Wege, Dokl. Akad. Nauk SSSR3 (1935), 339-342. JFM61.1439.01
- [26] R. Coifman - G. Weiss, "Analyse harmonique non-commutative sur certains espaces homogenes", Springer-Verlag, 1971. Zbl0224.43006MR499948
- [27] D. Danielli, Formules de représentation et théoreèmes d'inclusion pour des opérateurs sous-elliptiques, C.R. Acad. Sci.Paris Sér. I314 (1992), 987-990. Zbl0768.46019MR1168522
- [28] D. Danielli, A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Analysis, to appear. Zbl0940.35057MR1719837
- [29] G. David - S. Semmes, Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs n. 38, American Mathematical Society, Providence, RI1993. Zbl0832.42008MR1251061
- [30] G. David - S. Semmes, Uniform rectifiability and singular sets, Ann. Inst. H. Poincaré Anal. Non Linéaire13 (1996), 383-443. Zbl0908.49030MR1404317
- [31] L.C. Evans - R.F. Gariepy, "Measure Theory and Fine Properties of Functions", CRC press, 1992. Zbl0804.28001MR1158660
- [32] H. Federer, "Geometric Measure Theory", Springer-Verlag, 1969. Zbl0176.00801MR257325
- [33] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc.9 (1983), 129-206. Zbl0526.35080MR707957
- [34] C. FEFFERMAN - D. H. PHONG (eds.), Subelliptic eigenvalue problems, In: "Proceedings of the Conference in Harmonic Analysis in Honor of A. Zygmund", Wadsworth Math. Ser., Belmont, CA, 1981, pp. 530-606. Zbl0503.35071MR730094
- [35] C. Fefferman - A. Sanchez-Calle, Fundamental solutions for second order subelliptic operators, Ann. of Math.124 (1986), 247-272. Zbl0613.35002MR855295
- [36] C. Fefferman - E. Stein, Some maximal inequalities, Amer. J. Math.93 (1971), 107-115. Zbl0222.26019MR284802
- [37] G.B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat.13 (1975), 161-207. Zbl0312.35026MR494315
- [38] G.B. Folland - E.M. Stein, "Hardy Spaces on Homogeneous Groups", Princeton Univ. Press., 1982. Zbl0508.42025MR657581
- [39] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc.327 (1991), 125-158. Zbl0751.46023MR1040042
- [40] B. Franchi - S. Gallot - R. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann.300 (1994), 557-571. Zbl0830.46027MR1314734
- [41] B. Franchi - C. Gutiérrez - R. Wheeden, Weighted Sobolev-Poincare inequalities for Grushin type operators, Comm. Partial Differential Equations, 193-4 (1994), 523-604. Zbl0822.46032MR1265808
- [42] B. Franchi - E. Lanconelli, Une metrique associeé à une classe d'operateurs elliptiques degénérés, Proceedings of the meeting "Linear Partial and Pseudo Differential Operators", Rend. Sem. Mat. Torino (1984), 105-114. Zbl0553.35033MR745979
- [43] B. Franchi - E. Lanconelli, Hölder regularity theorem for a class of linear non uniform elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), 523-451. Zbl0552.35032MR753153
- [44] B. Franchi - E. Lanconelli, Une condition géométrique pour l'inégalité de Harnack, J. Math. Pures Appl.64 (1985), 237-256. Zbl0599.35134MR823405
- [45] B. Franchi - G. Lu - R.L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-604. Zbl0820.46026MR1343563
- [46] B. Franchi - G. Lu - R.L. Wheeden, A relationship between Poincaré type inequalities and representation formulas in spaces of homogeneous type, Internat Math. Res. Notices1 (1996), 1-14. Zbl0856.43006MR1383947
- [47] B. Franchi - R. Serapioni, Pointwise estimates for a class ofstrongly degenerate elliptic operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 527-568. Zbl0685.35046MR963489
- [48] B. Franchi - R. Serapioni - F. Serra Cassano, Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, preprint. Zbl0876.49014MR1437714
- [49] B. Franchi - R. Serapioni - F. Serra Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associaed with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. to appear. Zbl0952.49010MR1448000
- [50] B. Franchi - R. Wheeden, Some remarks about Poincaré type inequalities and representation formulas in metric spaces of homogeneous type, preprint. Zbl0934.46037MR1731670
- [51] E. Gagliardo, Caratterizzazione delle tracce sula frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova27 (1957), 284-305. Zbl0087.10902MR102739
- [52] J. Garcia Cuerva - J.L. Rubio De Francia, "Weighted Norm Inequalities and Related Topics", North-Holland Mat. Stud. n. 116, 1985. Zbl0578.46046MR807149
- [53] N. Garofalo, "Recent Developments in the Theory of Subelliptic Equations and Its Geometric Aspects", Birkhäuser, to appear.
- [54] N. Garofalo - D.M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math.49 (1996), 1081-1144. Zbl0880.35032MR1404326
- [55] N. Garofalo - D.M. Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces,J. Analyse Math.74 (1998), 67-97. Zbl0906.46026MR1631642
- [56] M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems", Ann. of Math. Studies105, Princeton Univ. Press, Princeton, N. J., 1983. Zbl0516.49003MR717034
- [57] E. Giusti, "Minimal Surfaces and Functions of Bounded Variation", Birkhäuser, 1984. Zbl0545.49018MR775682
- [58] M. Gromov, "Structures métriques pour les variétés Riemanniennes" (rédigé par J. Lafontaine et P. Pansu), CEDIC ED., Paris, 1981. Zbl0509.53034MR682063
- [59] M. Gromov, Carnot-Carathéodory spaces seen from within, Inst. Hautes Études Sci. Publ. Math. (1994).
- [60] V.V. Grushin, On a class of hypoelliptic operators, Math USSR-Sb., 123 (1970), 458-476. Zbl0252.35057
- [61] P. Hajlasz, Sobolev spaces on an arbitrary metric space, Potential Anal.5 (1996), 403-415. Zbl0859.46022MR1401074
- [62] P. Hajlasz - P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris Sér. I320 (1995), 1211-1215. Zbl0837.46024MR1336257
- [63] L. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc.36 (1972), 505-510. Zbl0283.26003MR312232
- [64] L. Hedberg - T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 23 (1983), 161-187. Zbl0508.31008MR727526
- [65] H. Hörmander, Hypoelliptic second-order differential equations, Acta Math.119 (1967), 147-171. Zbl0156.10701MR222474
- [66] D. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, II, J. Funct. Anal.43 (1981), 224-257. Zbl0493.58022MR633978
- [67] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J.53 (1986), 503-523. Zbl0614.35066MR850547
- [68] D. Jerison - C.E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math.46 (1982), 80-147. Zbl0514.31003MR676988
- [69] F. John, Rotation and strain, Comm. Pure Appl. Math.14 (1961), 391-413. Zbl0102.17404MR138225
- [70] R. Kerman - E.T. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators, Ann. Inst. Fourier (Grenoble) 36 (1986), 207-228. Zbl0591.47037MR867921
- [71] A. Kufner - O. John - S. Fucik, "Function Spaces", Prague: Academia Pub. House of the Czechoslovak Academy of Sciences, 1977. Zbl0364.46022MR482102
- [72] G. Lieberman, Sharp form of estimates for subsolutions and supersolutions of quasilinear elliptic equations involving measures, Comm. Partial Differential Equations18 (1993), 1191-1212. Zbl0802.35041MR1233190
- [73] G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana8 (1992), 367-439. Zbl0804.35015MR1202416
- [74] G. Lu, The sharp Poincaré inequality for free vector fields : an endpoint result, Rev. Mat. Iberoamericana18 (1994), 453-466. Zbl0860.35006MR1286482
- [75] G. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields and applications, C. R. Acad. Sci. Paris Sér. I320 (1995), 429-434. Zbl0842.46019MR1320116
- [76] G. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields of Hörmander type, Approx. Theory Appl., to appear. Zbl0916.46026MR1651473
- [77] G. Lu, Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations, Publ. Mat.40 (1996), 301-329. Zbl0873.35006MR1425620
- [78] P. Maheux - L. Saloff-Coste, Analyse sur les boules d'un op'erateur sous-elliptique, Math. Ann.303 (1995), 713-740. Zbl0836.35106MR1359957
- [79] P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability ", Cambridg studies in advanced Mathematics n. 44, Cambridge University Press, 1995. Zbl0819.28004MR1333890
- [80] V.G. Mazýa, "Sobolev Spaces", Springer-Verlag, 1985. Zbl0692.46023MR817985
- [81] V.G. Mazýa - I.E. Verbitsky, Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multiplier, Ark. Mat.33 (1995), 81-115. Zbl0834.31006MR1340271
- [82] M. Mekias, "Restriction to Hypersurfaces of Non-isotropic Sobolev Spaces", M.I.T. Ph.D Thesis, 1993.
- [83] A. Nagel - E.M. Stein - S. Wainger, Balls and metrics defined by vector fields I: basic properties, Acta Math.155 (1985), 103-147. Zbl0578.32044MR793239
- [84] O.A. Oleinik - E.V. Radkevich, "Second Order Equations with Non-negative Characteristic Form", (Mathematical Analysis1969), Moscow: Itogi Nauki, 1971 (Russian), English translation: Providence, R.I., Amer. Math. Soc., 1973.
- [85] R.S. Phillips - L. Sarason, Elliptic-parabolic equations of the second order, J. Math. Mech.17 (1967/8), 891-917. Zbl0163.34402MR219868
- [86] J.M. Rakotoson, Quasilinear equations and spaces of Campanato-Morrey type, Comm. Partial Differential Equations16 (1991), 1155-1182. Zbl0827.35021MR1116857
- [87] J.M. Rakotoson - W.P. Ziemer, Local behavior of solutions of quasilinear elliptic equations with general structure, Trans. Amer. Math. Soc.319 (1990), 747-764. Zbl0708.35023MR998128
- [88] L. Saloff-Coste, Parabolic Harnack inequality for divergence-form second-order differential operators, Potential Anal.4 (1995), 429-467. Zbl0840.31006MR1354894
- [89] J. Serrin, Local behavior of solutions of quasilinear equations, Acta Math.111 (1964), 243-302. Zbl0128.09101MR170096
- [90] J. Serrin, Isolated singularities of solutions of quasilinear equations, Acta Math.113 (1965), 219-240. Zbl0173.39202MR176219
- [91] G. Stampacchia, Problemi al contorno per equazioni di tipo ellittico a derivate parziali e questioni di calcolo delle variazioni connesse, Ann. Mat. Pura Appl. (4) 33 (1952), 211-238. Zbl0047.33902MR51451
- [92] E.M. Stein, "Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals", Princeton Univ. Press., 1993. Zbl0821.42001MR1232192
- [93] Robert S. Strichartz, Sub-Riemannian geometry, J. Differential Geom.24 (1986), 221-263. Zbl0609.53021MR862049
- [94] J. Strömberg - A. Torchinsky, "Weights, Sharp Maximal Functions and Hardy Spaces", Lecture Notes in Mathematics1381, Springer-Verlag, 1989. Zbl0676.42021
- [95] P. Tomter, Consant mean curvature surfaces in the Heisenberg group, Proc. Symp. Pure Math.54 (1993), Part I, 485-495. Zbl0799.53073MR1216601
- [96] N. Th. Varopoulos, Fonctions harmoniques sure les groupes de Lie, C.R. Acad. Sci. Paris Sér. I304 (1987), 519-521. Zbl0614.22002MR892879
- [97] N. Th. Varopoulos - L. Saloff-Coste - T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics100, Cambridge University press, 1992. Zbl0813.22003MR1218884
- [98] S.K. Vodop'yanov, Weighted Lp-potential theory on homogeneous groups, Sibirsk., Mat. Zh.33 (1992), 29-48. Zbl0774.31009MR1174058
- [99] C.J. Xu, Subelliptic variational problems, Bull. Soc. Math. France118 (1990), 147-169. Zbl0717.49004MR1087376
- [100] P. Zamboni, Local behavior of solutions of quasilinear elliptic equations with coefficients in Morrey spaces, Rend. Mat. Appl.15 (1995), 251-262. Zbl0832.35046MR1339243
- [101] W.P. Ziemer, "Weakly Differentiable Functions", Springer-Verlag, 1989. Zbl0692.46022MR1014685
Citations in EuDML Documents
top- Giuseppe Di Fazio, Pietro Zamboni, Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces
- Hajer Bahouri, Jean-Yves Chemin, Chao-Jiang Xu, Trace theorem on the Heisenberg group
- Francesco Uguzzoni, Ermanno Lanconelli, Degree theory for VMO maps on metric spaces
- Bernd Kirchheim, Francesco Serra Cassano, Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group
- Giuseppe Di Fazio, Maria Stella Fanciullo, Gradient estimates for elliptic systems in Carnot-Carathéodory spaces
- Franchi, Bruno, spaces and rectifiability for Carnot-Carathéodory metrics: an introduction
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.