Congruences between modular forms and related modules
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-B, Issue: 2, page 507-514
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCiavarella, Miriam. "Congruences between modular forms and related modules." Bollettino dell'Unione Matematica Italiana 9-B.2 (2006): 507-514. <http://eudml.org/doc/289625>.
@article{Ciavarella2006,
abstract = {We fix $\ell$ a prime and let $M$ be an integer such that $\ell \operatorname\{\not|\} M$; let $f \in S_2(\Gamma_1(M\ell^2))$ be a newform supercuspidal of fixed type at $\ell$ and special at a finite set of primes. For an indefinite quaternion algebra over $Q$, of discriminant dividing the level of $f$, there is a local quaternionic Hecke algebra $T$ associated to $f$. The algebra $T$ acts on a module $M_f$ coming from the cohomology of a Shimura curve. Applying the Taylor-Wiles criterion and a recent Savitt's theorem, $T$ is the universal deformation ring of a global Galois deformation problem associated to $\bar\rho_f$. Moreover $M_f$ is free of rank 2 over $T$. If $f$ occurs at minimal level, as a consequence of our results and by the classical Ihara's lemma, we prove a theorem of raising the level and a result about congruence ideals. The extension of this results to the non minimal case is an open problem.},
author = {Ciavarella, Miriam},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {507-514},
publisher = {Unione Matematica Italiana},
title = {Congruences between modular forms and related modules},
url = {http://eudml.org/doc/289625},
volume = {9-B},
year = {2006},
}
TY - JOUR
AU - Ciavarella, Miriam
TI - Congruences between modular forms and related modules
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/6//
PB - Unione Matematica Italiana
VL - 9-B
IS - 2
SP - 507
EP - 514
AB - We fix $\ell$ a prime and let $M$ be an integer such that $\ell \operatorname{\not|} M$; let $f \in S_2(\Gamma_1(M\ell^2))$ be a newform supercuspidal of fixed type at $\ell$ and special at a finite set of primes. For an indefinite quaternion algebra over $Q$, of discriminant dividing the level of $f$, there is a local quaternionic Hecke algebra $T$ associated to $f$. The algebra $T$ acts on a module $M_f$ coming from the cohomology of a Shimura curve. Applying the Taylor-Wiles criterion and a recent Savitt's theorem, $T$ is the universal deformation ring of a global Galois deformation problem associated to $\bar\rho_f$. Moreover $M_f$ is free of rank 2 over $T$. If $f$ occurs at minimal level, as a consequence of our results and by the classical Ihara's lemma, we prove a theorem of raising the level and a result about congruence ideals. The extension of this results to the non minimal case is an open problem.
LA - eng
UR - http://eudml.org/doc/289625
ER -
References
top- BREUIL, C. - CONRAD, B. - DIAMOND, F. - TAYLOR, R., On the modularity of elliptic curves over , J.A.M.S., 14 (2001), 843-939. Zbl0982.11033MR1839918DOI10.1090/S0894-0347-01-00370-8
- BREUIL, C. - MÉZARD, A., Multiplicités modulaires et représentations de et de en , Duke Math. J., 115, no. 2 (2002), 205-310, With an appendix by Guy Henniart. MR1944572DOI10.1215/S0012-7094-02-11522-1
- CIAVARELLA, M., Eisenstein ideal and reducible λ-adic representations unramified outside a finite number of primes, Bollettino U.M.I. (8) 9-B (2006), to appear. Zbl1177.11042MR2274122
- CONRAD, B. - DIAMOND, F. - TAYLOR, R., Modularity of certain Potentially Barsotti-Tate Galois Representations, Journal of the American Mathematical Society, Vol. 12, Number 2 (April 1999), 521-567. Zbl0923.11085MR1639612DOI10.1090/S0894-0347-99-00287-8
- DARMON, H. - DIAMOND, F. - TAYLOR, R., Fermat's Last Theorem, Current Developments in Mathematics, 1995, International Press, 1-154. Zbl0877.11035MR1474977
- DIAMOND, F. - TAYLOR, R., Lifting modular mod representations, Duke Math. J., 74 (1994), 253-269. Zbl0809.11025MR1272977DOI10.1215/S0012-7094-94-07413-9
- DIAMOND, F. - TAYLOR, R., Non-optimal levels of mod modular representations, Invent. Math., 115 (1994), 435-462. Zbl0847.11025MR1262939DOI10.1007/BF01231768
- DIAMOND, F., The Taylor-Wiles construction and multiplicity one, Invent. Math., 128 (1997), 379-391. Zbl0916.11037MR1440309DOI10.1007/s002220050144
- FONTAINE, J.-M. - MAZUR, B., Geometric Galois representation, Conference on Elliptic Curves and Modular Forms (Hong Kong, 1993), International Press, 41-78. MR1363495
- HIDA, H., Congruences of Cusp Forms and Special Values of their Zeta Functions, Inventiones Mathematicae, 63 (1981), 225-261. Zbl0459.10018MR610538DOI10.1007/BF01393877
- HIDA, H., On p-adic Hecke algebras for over totally reals fields, Ann. of Math., 128 (1988), 295-384. Zbl0658.10034MR960949DOI10.2307/1971444
- JACQUET, H. - LANGLANDS, R., Automorphic forms on , Lecture Notes Math., vol 114, Springer1970. MR401654
- LANGLANDS, R., Modular Forms and -adic representation, Modular Functions of One Variable II, 1972, vol. 349 of Lecture Notes Math., Springer, 361-500. MR354617
- MAZUR, B., Deforming Galois Representations, Galois Groups over , Ed. Ihara Ribet Serre, Springer1989. Zbl0714.11076MR1012172DOI10.1007/978-1-4613-9649-9_7
- MORI, A. - TERRACINI, L., A canonical map between Hecke algebras, Bollettino U.M.I. (8) 2-B (1999), 429-452. Zbl0933.11023MR1706552
- RIBET, K. A., Mod p Hecke Operators and Congruences Between Modular Forms, Inventiones Mathematicae, 71 (1983), 193-205. Zbl0508.10018MR688264DOI10.1007/BF01393341
- SAVITT, D., On a conjecture of Conrad, Diamond, and Taylor, Peprint, April 19, 2004.
- SAITO, T., Modular forms and p-adic Hodge theory, Inventiones Mathematcae, 129 (1997), 607-620. Zbl0877.11034
- TAYLOR, R. - WILES, A., Ring-theoretic properties of certain Hecke algebras, Ann. Math., 141 (1995), 553-572. Zbl0823.11030
- TERRACINI, L., A Taylor-Wiles System for Quaternionic Hecke Algebras, Compositio Mathematica, 137 (2003), 23-47. Zbl1028.11036
- WILES, A., Modular elliptic curves and Fermat last Theorem, Ann. of Math., 141 (1995), 443-551. Zbl0823.11029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.