A canonical map between Hecke algebras

Andrea Mori; Lea Terracini

Bollettino dell'Unione Matematica Italiana (1999)

  • Volume: 2-B, Issue: 2, page 429-452
  • ISSN: 0392-4041

How to cite

top

Mori, Andrea, and Terracini, Lea. "A canonical map between Hecke algebras." Bollettino dell'Unione Matematica Italiana 2-B.2 (1999): 429-452. <http://eudml.org/doc/195006>.

@article{Mori1999,
author = {Mori, Andrea, Terracini, Lea},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {Hecke algebras; Jacquet-Langlands correspondence; spaces of newforms; adelic representations; integrability},
language = {eng},
month = {6},
number = {2},
pages = {429-452},
publisher = {Unione Matematica Italiana},
title = {A canonical map between Hecke algebras},
url = {http://eudml.org/doc/195006},
volume = {2-B},
year = {1999},
}

TY - JOUR
AU - Mori, Andrea
AU - Terracini, Lea
TI - A canonical map between Hecke algebras
JO - Bollettino dell'Unione Matematica Italiana
DA - 1999/6//
PB - Unione Matematica Italiana
VL - 2-B
IS - 2
SP - 429
EP - 452
LA - eng
KW - Hecke algebras; Jacquet-Langlands correspondence; spaces of newforms; adelic representations; integrability
UR - http://eudml.org/doc/195006
ER -

References

top
  1. ATKIN, A.- LEHNER, J., Hecke operators on Γ 0 m , Math. Ann., 185 (1970), 134-160. Zbl0177.34901MR268123
  2. CASSELMAN, W., On some results of Atkin and Lehner, Math. Ann., 201 (1973), 301-314. Zbl0239.10015MR337789
  3. DIAMOND, F.- TAYLOR, R., Non-optimal levels of mod l modular representations, Inventiones Math., 115 (1994), 435-462. Zbl0847.11025MR1262939
  4. DIAMOND, F.- TAYLOR, R., Lifting modular mod l representations, Duke Math. J., 74, 2 (1994), 253-269. Zbl0809.11025MR1272977
  5. FLATH, D., Decomposition of representations into tensor products, in Automorphic Forms, Representations, and L -functions, Proc. Symp. Pure Math., 33, 1 (1979), 179-183. Zbl0414.22019MR546596
  6. GELBART, S., Automorphic Forms on Adele Groups, Ann. Math. Studies, 83, Princeton Univ. Press1975. Zbl0329.10018MR379375
  7. HIDA, H., Congruences of cusp forms and special values of their zeta functions, Inventiones Math., 63 (1981), 225-261. Zbl0459.10018MR610538
  8. HIDA, H., On congruence divisors of cusp forms as factors of the special values of their zeta functions, Inventiones Math., 64 (1981), 221-262. Zbl0472.10028MR629471
  9. HIDA, H., Elementary theory of L-functions and Eisenstein series, London Math. Soc. Student Texts, 26 (1993). Zbl0942.11024MR1216135
  10. JACQUET, H.- LANGLANDS, R., Automorphic Forms on G L 2 , SpringerLecture Notes Math., 114 (1970). Zbl0236.12010MR401654
  11. KHARE, C., Congruences between cusp forms: the p , p case, Duke Math. J., 80, 3 (1995), 631-667. Zbl0857.11021MR1370111
  12. KHARE, C., A local analysis of congruences in the p , p case, Part I, to appear in Compositio Math. Zbl1072.11506MR1631704
  13. KHARE, C., A local analysis of congruences in the p , p case, Part II, preprint. Zbl0971.11028
  14. MIYAKE, T., Modular Forms, Springer (1989). Zbl0701.11014MR1021004
  15. MORI, A., An expansion principle for quaternionic modular forms, preprint. 
  16. RIBET, K., On modular representations of Gal Q ¯ / Q arising from modular forms, Inventiones Math., 100 (1990), 431-476. Zbl0773.11039MR1047143
  17. RIBET, K., Multiplicities of Galois representations on Jacobians of Shimura curves, Israel Math. Conf. Proc., 3 (1990). Zbl0721.14012MR1159117
  18. SHIMURA, G., Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton Univ. Press (1971). Zbl0221.10029MR314766

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.